Реклама

Главная - Приватбанк
Л. В. Канторович. Разработка эффективного использования ресурсов, решение задач оптимизации. Постановка Задач линейного программирования и их решение с помощью msexcel Теория оптимального использования ресурсов л в канторовича
Леонид Витальевич Канторович родился в 1912 пив возрасте 14лет поступил в Ленинградский государственный университет (ЛГУ), который окончил в 1930 г. Затем учился в аспирантуре. В 1934 г. он стал профессором ЛГУ, а спустя год —доктором наук. В годы войны преподавал в Военно-морской инженерской академии, после войны возглавлял отдел в Институте математики и механики ЛГУ, а с 1958 г. — кафедру вычислительной математики. Одновременно ученый возглавлял отдел приближенных вычислений Математического института им. Стеклова Ленинградского отделения АН СССР.
Первые научные результаты были получены Л.В. Канторовичем в дескриптивной теории функций и множеств, в частности в теории проективных множеств. В 1939 г. ученый опубликовал работу «Математические методы организации и планирования производства». В ней он описал основные типы экономических задач, поддающиеся открытому им математическому методу, положив тем самым начало линейному программированию.
В 1949 г. Л.В. Канторович стал лауреатом Государственной премии СССР «За работы по функциональному анализу», в 1958 г. — был избран членом-корреспондентом АН СССР (экономика и статистика), а в 1964 г. — академиком АН СССР Он являлся одним из основателей Сибирского отделения АН СССР. В 1960 г. переехал в Новосибирск, где руководил Лабораторией по применению математических и статистических методов в экономических исследованиях и планировании, а также преподавал в Новосибирском университете. В 1965 г. ученый удостаивается Ленинской премии, затем становится почетным доктором многих университетов мира.
Свой путь в науке Канторович начинал как математик, но известность в науке он получил именно как математик-экономист, когда сформулировал и предложил решение задач, получивших название «задачи линейного программирования». В 1959 г. была опубликована работа, которую ученый считал главной: «Экономический расчет наилучшего использования ресурсов».
Но не все его предложения находили понимание у высших представителей власти. Поэтому в Академии наук СССР была создана специальная лаборатория по применению математики в экономике во главе с академиком B.C. Немчиновым. В 1965 г. Л.В. Канторович вместе с В.В. Новожиловым и B.C. Немчиновым стал лауреатом Ленинской премии за развитие математико-экономического направления. После этого нападки на Канторовича резко сократились, хотя не желавшие использовать оптимизационные методы руководители разного уровня остались. Здесь сказался еще непознанный тогда закон поведения экономических систем, обоснованный профессором К.А. Смирновым в 80-х гг.
В плановой экономике утвержденный план работы любой экономической системы (ЭС) становился законом. А оптимальный план, уже по самому его определению, был напряженным, в нем отсутствовали скрытые резервы, которые руководителям экономических систем все же удавалось находить.
В 1975 г. за разработку задачи линейного программирования и метода ее решения Л.В. Канторович был награжден Нобелевской премией с формулировкой «За разработку методов эффективного использования ресурсов».
В целом вклад ученого в науку можно коротко охарактеризовать следующим образом:
1) он впервые обратил внимание на то, что разнообразные проблемы можно сформировать как задачи оптимизации и предложил общий подход к их решению. Это задачи по загрузке оборудования, по раскрою материалов, распределению культур по площадям, транспортная задача;
2) создал теорию оптимального народно-хозяйственного планирования — по сути дела предложил модель рыночного социализма. Ввел новые показатели — разрешающие множители, объективно обусловленные оценки, двойственные оценки — эти показатели дают возможность отбирать проекты для составления оптимального плана, согласовывать народно-хозяйственные интересы с интересами отдельных экономических систем (хозяйственных единиц);
3) разработал систему оптимального планирования, которая вступила в противоречие с господствовавшей тогда трудовой теорией стоимости. Представители этой теории не признавали вводимые Канторовичем ограничения не только на объем труда, но и на объемы других невоспроизводимых ресурсов (земля, полезные ископаемые). Кроме того, задача разработки оптимального плана требовала для решения вычислительные средства большой мощности. Рекомендации, вытекавшие из теории оптимального планирования, предполагали использование оценок оптимальных цен, которых не было в реальности, — действовали цены, не балансировавшие спрос и предложение. Существовала и проблема глобального критерия, который должен учитывать интересы разных групп населения и экономических систем (предприятий, отраслей).
Л.В. Канторовича можно считать основоположником науки об управлении и принятии управленческих решений, основная задача которой — применение естественно-научного метода к анализу задач организационного управления с тем, чтобы снабдить тех, кто управляет, оптимальными решениями.
Развивая идею оптимальности в экономике, он установил взаимозависимость оптимальных цен и оптимальных производственных и управленческих решений и пришел к выводу, что каждое оптимальное решение взаимосвязано с оптимальной системой цен. Работая над общей теорией приближенных методов, он предложил эффективные способы решения операторных уравнений (в том числе метод наискорейшего спуска и метод Ньютона для таких уравнений).
Работы Л.В. Канторовича (он автор более 110 научных трудов) посвящены оптимизации организации и планирования производства, линейному программированию, экономической кибернетике, экономическим показателям, ценообразованию. Среди трудов ученого особо выделяют: «Экономический расчет наилучшего использования ресурсов» (1959), «Динамическая модель оптимального планирования» (1964), «Математика и экономика — взаимопроникновение наук» (1977, совместное М.К. Гавуриным).
Неоспоримым вкладом в теорию и практику оптимального планирования стало открытие Канторовичем методов линейного программирования. Предложив новый математический аппарат для экономической науки, он впервые поставил задачу хозяйственного планирования как задачу оптимизации. Именно за решение этой и других задач в 1975 г. ему совместно с американским экономистом Т. Купмансом была присуждена Нобелевская премия по экономике.
Л.В. Канторович также выявил необходимость введения оценок для всех видов затрачиваемых производственных факторов при составлении производственных планов. В связи с этим он предложил классификацию производственных факторов, выделяя четыре группы:
1) пропорционально зависимые (определенное количество шин для автомобиля);
2) неизменно расходуемые (охрана, управленческие расходы и т.д.);
3) нелимитирующие (избыточные);
4) существенно переменные, т.е. факторы, имеющиеся в ограниченном количестве, расход которых на единицу продукции зависит от организации и технологии производства. Наиболее значительными факторами являются рабочая сила, природные ресурсы и производственные площади.
В предложенной ученым системе экономических расчетов дефицитные ресурсы получают высокую оценку, а имеющиеся в избытке — нулевую. Система экономических расчетов, использующая объективно обусловленные оценки, позволяет на основе определения дефицитности, лимитированности и задолженности производственных факторов найти такой вариант их использования, который бы обеспечил при данных ресурсах максимальное выполнение программного задания с учетом ассортимента.
Особенно важным является вопрос о наилучшем использовании оборудования. Здесь ученый ввел весьма ценное понятие «прокатной оценки» — ренты с оборудования. Он писал: «Мы употребляем термин "прокатная оценка", так как это есть оценка той платы, которая была бы оправдана, если бы такая машина бралась на некоторый срок напрокат (в аренду). Можно ее рассматривать также как ренту с оборудования, которую мы хотя и не оплачиваем, но исчисляем ее возможный размер». Таким образом, если не использовать в течение дня данную машину, значит, потерять определенную сумму денег и, следовательно, количество труда, которые соответствуют прокатной оценке, а ее использование, напротив, позволит сэкономить эту же сумму. Например, Л.В. Канторович рассчитал, что использование каждого машино-дня дает экономию в себестоимости в сумме 600 руб., т.е. использование каждой лишней машины позволяет сэкономить в день 600 руб., а не использование приводит к потере этих 600 руб. В данном случае 600 руб. — это и есть прокатная оценка.
С вопросом о рациональном использовании оборудования тесно связана и проблема рационального использования природных ресурсов. Последние всегда ограниченны, поэтому значительное внимание ученый уделял теории дифференциальной ренты. Величина ренты определяется, как он утверждал, той экономией труда, которую дает использование этих источников в оптимальном плане. Рентные оценки, по его мнению, позволяют измерить стоимость использования природных ресурсов, в частности земли, воды, воздуха и т.д. Эта идея намного опередила свое время. Однако в конце 1930-х гг. она пришла в противоречие с концепцией общенародной собственности на природные ресурсы, из которой вытекало, что к ним не применимы стоимостные показатели, так как они выделялись «даром». Двойственные оценки материальных ресурсов были расценены как попытка подменить трудовую основу стоимости понятием полезности или дефицитности. Сам же Л.В. Канторович рассматривал созданную им теорию как научную базу для всей системы народно-хозяйственных расчетов.
Проблеме динамического программирования ученый посвятил свою работу «Динамическая модель оптимального планирования» (1964). Он впервые построил оптимальные статичные и динамические модели текущего и перспективного планирования. К постановке и анализу динамических задач он пришел, анализируя недостатки статичной оптимизации. Многие задачи оптимизационного программирования расчленяются, как известно, на этапы (шаги), и для их решения весьма эффективным является метод динамического программирования, развитый впоследствии Р. Беллманом и его школой. Следует отметить, что использование динамических экономико-математических моделей стало практиковаться в нашей стране лишь с середины 1960-х гг.
Обобщая сказанное, отметим, что Л.В. Канторович — яркий представитель петербургской математической школы, созданной талантливейшим русским математиком П.Л. Чебышевым (1821 — 1894), умевшим элементарными средствами получать фундаментальные результаты, связывать проблемы математики с принципиальными вопросами естествознания и техники, впервые доказавшим в теории вероятностей действие закона больших чисел (в общей форме), а в теории чисел — асимптотический закон распределения простых чисел и др.

Лекция, реферат. Л. В. Канторович. Разработка эффективного использования ресурсов, решение задач оптимизации - понятие и виды. Классификация, сущность и особенности. 2018-2019.



Л.В. Канторович - экономист - внес выдающийся вклад в экономическую науку. С его именем связан естественнонаучный подход к исследованию широкого круга проблем планирования. Л.В. Канторович заложил фундамент современной теории оптимального планирования. Развернутому изложению основных идей этой теории посвящена его капитальная монография “Экономический расчет наилучшего использования ресурсов” . Стержнем этой книги является формулировка основной задачи производственного планирования и динамической задачи оптимального планирования. Указанные задачи достаточно просты, но в то же время учитывают важнейшие черты экономического планирования. Одно из привлекательных качеств состоит в том, что они базируются на схеме линейного программирования и, следовательно, на развитом аналитическом аппарате и обширном наборе эффективных вычислительных средств, часть из которых предложил сам Леонид Витальевич.

Значителен его вклад в проблему ценообразования - одну из коренных, затрагивающую, по существу, все сферы функционирования общества. Л.В. Канторович установил связь цен и общественно-необходимых затрат труда. Он дал определение понятия оптимума, оптимального развития, конкретизировав, в частности, что следует понимать под максимальным удовлетворением потребностей членов общества. Из его положения о неразрывности плана и цен вытекает зависимость общественно-необходимых затрат труда от поставленных целей общества.

Таким образом, цели общества, оптимальный план и цены составляют одно неразрывное целое. Им указаны конкретные условия, при которых объективно обусловленные оценки оптимального плана совпадают с полными (прямыми и сопряженными) затратами труда. Определение перспектив экономики, наличие гигантских “естественных монополий” заставляет сохранить для них расчет, по крайней мере, опорных цен, согласованных и взаимно, и с интересами других отраслей экономики.

Математические модели получили отражение в некоторых курсах политической экономии. В работах Л.В. Канторовича исследовался ряд основных проблем экономической теории и практики хозяйствования. Указывая на недостатки действовавшей экономической системы, Л.В. Канторович подчеркивал, что система экономических показателей должна быть единой, построена по единому принципу. В связи с этим значительную часть своих работ в этой области Леонид Витальевич посвятил разработке и анализу конкретных экономических показателей.

В работах самого Л.В. Канторовича особое внимание было уделено оценке земельных ресурсов и воды, учету этих показателей в (заготовительных) ценах на сельскохозяйственную продукцию. Предложены оригинальные подходы к их расчету (сочетание метода наименьших квадратов и линейного программирования). На этой основе были даны рекомендации по улучшению системы экономических показателей и расчетов в сельском хозяйстве. Значение предложенных им принципов расчета в складывающейся экономической системе только возрастает.

В работах Л.В. Канторовича вскрывается сущность понятия показателя эффективности капиталовложений, показывается его роль в экономических расчетах принятия решений, предлагается методика определения величины этого нормативного показателя. Таким образом, Л.В. Канторович дал убедительное научное обоснование необходимости применения норматива эффективности и на основе оптимизационного подхода дал объективный путь его расчета.

В работе “Амортизационные платежи при оптимальном использовании оборудования” (1965) Л.В. Канторовичем была вскрыта сущность понятия амортизации. Он показал, как можно повысить эффективность использования оборудования, разделив амортизационные платежи на два типа, и с помощью остроумной математической модели указал, как определить численную величину коэффициента амортизационных отчислений. Это изменение позволило сделать ряд принципиальных выводов о необходимости корректировки принятой методики расчета амортизации.

Специальный интерес проявлял Леонид Витальевич к проблемам транспорта. Еще в его первых экономических работах были даны общий анализ транспортной задачи и метод потенциалов для ее решения. Этот метод широко использовался на транспорте (железнодорожном, автомобильном, морском, воздушном) и в органах централизованного снабжения для рационального прикрепления и рациональной организации перевозок. Он, безусловно, сохраняет свое значение и сейчас наряду с широко используемыми методами диспетчерского управления и расчетами маршрутов.

В работах “Об использовании математических моделей в ценообразовании на новую технику” (1968) и “Математико-экономический анализ плановых решений и экономические условия их реализации ” (1971) Л.В. Канторович исследовал проблему эффективной работы транспорта с экономической точки зрения, показал, каковы должны быть транспортные тарифы в зависимости от вида транспорта, груза, расстояний и т. д. В ряде работ им рассматривались и вопросы комплексной транспортной системы - взаимосвязь транспорта с другими отраслями народного хозяйства и распределение перевозок между видами транспорта с учетом экономичности и в особенности энергозатрат. Эти работы сохраняют свое значение и сейчас.

Помимо проблем народнохозяйственного планирования, Л.В. Канторович рассмотрел вопросы, относящиеся к отраслевому планированию. Наиболее простой и часто используемой является предложенная им модель, базирующаяся на транспортной задаче. На ряд более сложных моделей, в частности производственно-транспортной, динамической, декомпозиционной, им указано в работах, посвященных текущему и перспективному отраслевому планированию (“Возможности применения математических методов в вопросах производственного планирования”, 1958) и др. Эти вопросы нашли отражение в исследованиях по отраслевым АСУ.

Большое внимание Леонид Витальевич уделял вопросам рационального использования труда. Им было предложено введение платежей предприятий за использование труда дифференцированных по профессиям, половозрастным признакам и территории. Он указывал также на возможности научного, количественного подхода к социальным проблемам, вопросам совершенствования сферы услуг и др. Вопросы экономического стимулирования рационального использования трудовых ресурсов остаются актуальными и сейчас.

В течение ряда лет и особенно в последние годы Л.В. Канторовича интересовали проблемы эффективности технического прогресса, в частности вопросы внедрения в производство новой техники.

Особый интерес представляет обоснование предложения об установлении двух уровней цен на принципиально новую продукцию в первые годы ее выпуска. Важное значение имел также вывод о необходимости более высоко оценивать вклад в национальный доход технического прогресса и науки, чем это получалось по принятым тогда методам расчета (“Ценообразование и технический прогресс”, 1979).

Л.В. Канторович уделял большое внимание внедрению разработанных им методов в экономическую практику. В первую очередь в этой связи следует отметить цикл работ, посвященных методам рационального раскроя материалов, начатый Леонидом Витальевичем еще в 1939 - 1942 гг. В 1948 - 1950 гг. эти методы были внедрены на Ленинградском вагоностроительном заводе имени Егорова, на Кировском заводе и распространены впоследствии на некоторых других предприятиях. Более широкому распространению методов рационального раскроя способствовал ряд проведенных по инициативе Л.В. Канторовича совещаний.

С 1964 г. по предложению Леонида Витальевича проводилась большая работа по внедрению системных методов расчета оптимальной загрузки прокатных станов в масштабах всей страны.

Являясь членом Государственного комитета по науке и технике, Л.В. Канторович вел большую организационную работу, направленную на совершенствование методов планирования и управления народным хозяйством. Он возглавлял Научный совет ГКНТ по использованию оптимизационных расчетов, состоял членом многих ведомственных советов и комиссий (по ценообразованию, транспорту и др.). Вклад Леонида Витальевича в исследование проблемы эффективности производства и, в частности, проблемы эффективности капитальных вложений исключительно велик.

РЕФЕРАТ

Тема: «Применение методов линейного программирования в

военном деле. Симплекс-метод»

курсанта 2-го курса I взв. 8-й роты

Дальневосточного военного института

им. К.К. Рокоссовского

Верещак Дмитрия Владимировича

ПЛАН

I. Что такое линейное программирование

II. Основные направления использования линейного программирования в военном деле

1.Задачи о перевозках (транспортная) задача

2.Задачи оптимального распределения средств

поражения

III. Симплекс-метод

IV. Заключение

I. ЧТО ТАКОЕ ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Каждый человек ежедневно, не всегда осознавая это решает проблему: как получить наибольший эффект, обладая ограниченными средствами.

Наши средства и ресурсы всегда ограничены. Жизнь была бы менее интересной, если бы это было не так. Не трудно выиграть сражение, имея армию в 10 раз большую, чем у противника; Ганнибалу, чтобы разбить римлян при Каннах, командуя вдвое меньшей армией, нужно было действовать очень обдуманно.

Чтобы достичь наибольшего эффекта, имея ограниченные средства, надо составить план, или программу действий. Раньше план в таких случаях составлялся «на глазок» (теперь, впрочем, зачастую тоже). В середине XX века был создан специальный математический аппарат, помогающий это делать «по науке». Соответствующий раздел математики называется математическим программированием. Слово «программирование» здесь и в аналогичных терминах («линейное программирование, динамическое программирование» и т.п.) обязано отчасти историческому недоразумению, отчасти неточному переводу с английского. По-русски лучше было бы употребить слово «планирование». С программированием для ЭВМ математическое программирование имеет лишь то общее, что большинство возникающих на практике задач математического программирования слишком громоздки для ручного счета, решить их можно только с помощью ЭВМ, предварительно составив программу.

Временем рождения линейного программирования принято считать 1939г., когда была напечатана брошюра Леонида Витальевича Канторовича «Математические методы организации и планирования производства». Поскольку методы, изложенные Л.В.Канторовичем, были мало пригодны для ручного счета, а быстродействующих вычислительных машин в то время не существовало, работа Л.В.Канторовича осталась почти не замеченной.

Свое второе рождение линейное программирование получило в начале пятидесятых годов с появлением ЭВМ. Тогда началось всеобщее увлечение линейным программированием, вызвавшее в свою очередь развитие других разделов математического программирования. В 1975 году академик Л.В.Канторович и американец профессор Т.Купманс получили Нобелевскую премию по экономическим наукам за «вклад в разработку теории и оптимального использования ресурсов в экономике».

Эти премии получили свое название в честь их учредителя – известного химика и изобретателя Альфреда Нобеля, они должны были присуждаться за научные открытия в области физики, химии, физиологии или медицины, за литературные произведения, «отражающие человеческие идеалы», а так же тем, кто «внесет весомый вклад в сплочение народов, уничтожение рабства, снижение численности существующих армий и содействие мирной договоренности». Математикам премия не предназначалась. Однако в 1969 году Шведский банк по случаю 300-летия со дня своего образования учредил премию памяти А.Нобеля – по экономическим наукам. Она то и была присуждена в 1975 году Л.В.Канторовичу и Т.Купмансу за создание новой математической науки (получившей название линейного программирования) и применение этой теории в экономике.

В автобиографии, представленной в Нобелевский комитет, Леонид Витальевич Канторович рассказывает о событиях, случившихся в 1939 году. К нему, 26-летнему профессору-математику, обратились за консультацией сотрудники лаборатории планерного треста, которым нужно было решить задачу о наиболее выгодном распределении материала между станками. Эта задача сводилась к нахождению максимума линейной функции, заданной на многограннике. Максимум такой функции достигался в вершине, однако число вершин в этой задаче достигало миллиарда… Поэтому простой перебор вершин не годился. Леонид Витальевич писал: «оказалось, что эта задача не является случайной. Я обнаружил большое число разнообразных по содержанию задач, имеющих аналогичный математический характер: наилучшее использование посевных площадей, выбор загрузки оборудования, рациональный раскрой материала, распределение транспортных грузопотоков… Это настойчиво побудило меня к поиску эффективного метода их решения». И уже летом 1939 года была сдана в набор книга Л.В.Канторовича «Математические методы организации и планирования производства», в которой закладывались основания того, что ныне называется математической экономикой.

Но вернемся в 1939 год. Говорят, что истина рождается ересью и увы, так случилось и с идеями Л.В.Канторовича в области экономики. Они не встретили понимания в момент их зарождения, были объявлены ересью, и его работа была прервана.

Концепции Леонида Витальевича вскоре после войны были переоткрыты на западе. Американский экономист Т.Купманс в течении многих лет привлекал внимание математиков к ряду задач, связанных с военной тематикой. Он активно способствовал тому, чтобы был организован математический коллектив для разработки этих проблем. В итоге было осознано, что надо научиться решать задачи о нахождении экстремумов линейных функций на многогранниках, задаваемых линейными неравенствами. По предложению Купманса этот раздел математики получил название линейного программирования.

Американский математик А.Данциг в 1947 году разработал весьма эффективный конкретный метод численного решения задач линейного программирования (он получил название симплекс метода). Идеи линейного программирования в течении пяти шести лет получили грандиозное распространение в мире, и имена Купманса и Данцига стали повсюду широко известны.

Примерно в это время Купманс узнал, что еще до войны в далекой России уже было сделано нечто похожее на разработку начал линейного программирования. Как легко было бы Данцигу и Купмансу проигнорировать эту информацию! Маленькая книжица, изданная ничтожным тиражом, обращенная даже не а экономистам, а к организаторам производства, с минимумом математики, без четко описанных алгоритмов, без доказательств теорем – словом, стоит ли принимать такую книжку во внимание… Но Купманс настаивает на переводе и издании на западе книги Канторовича. Его имя и идеи становятся известны всем. Воздадим должное благородству американского ученого!

А самому Леониду Витальевичу – как естественно было бы ему, испытав первые грозные удары ретроградов, остеречься от «грехов» молодости, забыть про всю эту экономику и вернуться к математике. Но Л.В.Канторович продолжает писать математические работы, навеянные экономическими идеями, участвует и в конкретных разработках на производстве. При этом (одновременно с Данцигом, но не зная его работ) он разрабатывает метод, позже названный симплекс-методом. Как только в 50-е годы образуется маленький просвет и кое что из запретного становится возможным, он организует группу студентов на экономическом факультете ЛГУ для обучения методам оптимального планирования. А начиная с 1960 года Леонид Витальевич занимается только экономической и связанной с нею математической проблемами. Его вклад в этой области был отмечен Ленинской премией в 1965 году (присуждена ему совместно с В.С.Немчиновым и В.В.Новожиловым) и, как уже говорилось, Нобелевской премией в 1975 году.

II .ОСНОВНЫЕ НАПРАВЛЕНИЯ ИСПОЛЬЗОВАНИЯ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ В ВОЕННОМ ДЕЛЕ.

Наиболее распространенными направлениями использования линейного программирования в военном деле являются:

Задача о перевозках (транспортная задача)

Задача на распределение сил и средств (распределение сил и средств поражения по целям, распределение сил и средств разведки и др.)

1. ЗАДАЧИ О ПЕРЕВОЗКАХ (ТРАНСПОРТНАЯ ЗАДАЧА).

Эти задачи являются исторически одними из первых, для решения которых использовалось линейное программирование. В зависимости от выбранного критерия эффективности различают транспортные задачи по пробегу, по стоимости, по времени, совместно по критериям пробега и стоимости, с ограничениями по пропускной способности дорог и транспорта, задачи в сетевой постановке и др.

Сформулируем в общем виде транспортную задачу линейного программирования по критерию стоимости. Эта задача имеет значение тогда, когда время не является определяющим фактором при организации перевозок.

Пусть имеется m складов, в которых сосредоточен некоторый однородный продукт (ГСМ, боеприпасы и т.д.) в количествах соответственно а i (i=1,2,…,m) единиц. Имеется n потребителей этого продукта в количествах соответственно b j (j=1,2,…,n) единиц. На основании опытов и расчетов известно, что на доставку одной единицы продукта с i-того склада j-тому потребителю затрачивается с ij денежных единиц.

Все значения c ij являются постоянными величинами. Перечисленные исходные данные помещены в таблице 1.

Обозначим через x ij ³0 (i=1,2,…,m; j=1,2,…n) количество продукта, планируемого для доставки с i-того склада j-тому потребителю. Естественно, что если x ij =0, то доставка продукта с i-того склада j-тому потребителю не планируется. План обеспечения всех потребителей определяется таблицей (матрицей):

Таблица 1.

Склады

Потребители

Запасы на складах

1

Потребность

Очевидно, можно предложить большое число планов (1) обеспечения потребителей, но при выборе любого из них должны быть учтены условия:

(2)

(3)

Выражения (2) определяют, что с любого склада можно взять продукта не более имеющихся там запасов. Выражения (3) означают, что каждый потребитель обеспечивается полностью его заявке. По смыслу задачи должно выполняться условие:

Последнее выражение означает, что запасов на складах достаточно для снабжения всех потребителей.

Суммарная стоимость перевозок для любого выбранного плана (1) определяется выражением:

(4)

Транспортная задача линейного программирования по критерию стоимости формулируется следующим образом.

Найти такие значения x ij (т.е. найти такой план перевозок (1)), удовлетворяющий условиям (2), (3), при которых суммарная стоимость перевозок (4) будет минимальной.

При больших m и n эта задача решается на ЭВМ. Для этого нужно ввести в машину исходные данные, помещенные в таблице 1 и воспользоваться разработанной программой. При небольших m и n задача может быть решена вручную с использованием общих методов решения. Для значений m и n до 5-6 задачу часто удается решить путем прикидочных расчетов, перебором вариантов и логических размышлений.

Задача. Для обеспечения ГСМ четырех танковых соединений имеется три склада. Известны запасы ГСМ и потребности в нем соединений. Определение стоимости доставки одной тонны ГСМ из каждого склада в любое соединение. Все исходные данные записаны в таблице 2.

Сформулировать задачу линейного программирования для данных условий и определить такой план снабжения ГСМ соединений, при котором суммарный расход на его провозку будет минимальным.

Решение: Обозначим через x ij (i=1,2,3; j=1,2,3,4) количество ГСМ, планируемых для доставки с i-того склада (i=1,2,3) j-тому соединению (j=1,2,3,4).

Таблица 2.

Склады

Соединения

Запасы ГСМ на складах

1

2

Потребность в ГСМ

Выбор планов зависит от запасов ГСМ на складах и потребностей в нем соединений, что математически определяется выражениями:

(2 1)

(3 1)

Суммарные расходы на перевозку ГСМ определяются линейными выражениями:

Требуется определить такие значения x ij (выбрать такой план) удовлетворяющий выражениям (2 1) и (3 1), которые критерий эффективности обращают в минимум. Так формулируется задача линейного программирования для данных условий.

Эта задача решается элементарными подсчетами и рассуждениями.

Отметим в столбцах звездочками минимальные значения стоимости перевозки одной тонны ГСМ. В каждое соединение нужно планировать доставку из того склада, для которого эта стоимость будет наименьшей или близкой к ней, но с учетом расходов на доставку ГСМ и в другие соединения. Очевидно, в 1-е и 4-е соединение целесообразно завозить ГСМ полностью из 1-го склада, поэтому целесообразно выбрать x 11 =350, x 14 =500. Во второе соединение выгодно доставить горючее целиком с 3-го склада. Но тогда будут большие расходы при доставке ГСМ в 3-е соединение из 2-го склада. Поэтому целесообразно выбрать x 13 =50, x 33 =350, т.е. завести горючее в 3-е соединение с 1-го и 3-го складов, а 200 т. для 2-го соединения завести из склада, x 22 =200, x 32 =250. Результаты расчетов занесены в таблице 2, по которой удобно проверить выполнение условий (2 1), (3 1), найдя суммы x ij по строкам и столбцам.

При таком плане расходы будут минимальными:

Для сравнения, какую можно иметь экономию в средствах, выбрав оптимальный план, рассмотрим один из возможных планов:

x 11 =350, x 12 =450, x 13 =x 14 =0, x 21 =x 22 =x 23 =0,

x 24 =300, x 31 =x 32 =0, x 33 =400, x 34 =200

При этом плане стоимость перевозок будет равна:

Она больше на 1950 единиц K min , что составляет более чем 30%.

Полученное оптимальное решение является основой для применения объективного решения на снабжение ГСМ соединений с учетом конкретной обстановки.

2.ЗАДАЧИ ОПТИМАЛЬНОГО РАСПРЕДЕЛЕНИЯ СРЕДСТВ ПОРАЖЕНИЯ.

Задачи оптимального распределения средств поражения в общем виде формулируются так: имеется некоторое количество средств поражения и целей. Требуется так распределить средства поражения по целям, чтобы общий эффект применения был в определенном смысле оптимален.

Поражение противника является одним из важных элементов боевых действий. Поэтому решение задач на поражение является важным этапом при планировании и управлении боевыми действиями.

Различают два основных типа задач целераспределения:

Для средств поражения, находящихся в обороне;

Для средств поражения нападения;

Распределение средств поражения обороны осуществляется в ходе боевых действий, выявляемые цели и возникающие условия заранее неизвестны и во многом определяются противником. Расчеты нужно производить очень быстро, что возможно при наличии современных вычислительных средств.

Распределение средств нападения по выявленным целям может быть спланировано заранее на основе расчетов. Однако резкой границы между этими вариантами нет потому, что в обоих случаях выявляются новые цели, изменяются условия и потребуется производить перерасчеты.

Задача распределения средств поражения при ведении боевых действий в полной мере очень сложна и требует учета большого числа факторов. Некоторые же частные задачи успешно решаются с помощью линейного программирования.

Рассмотрим первую из таких задач. Имеется m различных средств поражения и n целей. Принимаются следующие допущения:

Число средств поражения не превосходит числа целей m£n;

Цели имеют разную важность, определяемую коэффициентом важности k j (j=1,2,…,n);

За каждой целью не может быть закреплено более одного средства поражения, то есть должно быть обстреляно максимальное число целей;

Известны вероятности p ij поражения i-ым средством j-ой цели, которые составляют таблицу вероятностей поражения :

(5)

Таблица вероятности поражения вычисляется по соответствующим формулам теории стрельбы.

Закрепление или не закрепление i-того средства поражения за j-той целью выражается величиной x ij , принимающей значение 1, когда имеется закрепление, и 0, когда его нет.

План распределения средств по целям будет определяться таблицей (таблицей 1). За критерий эффективности в общем случае выберем взвешенное математическое описание числа уничтоженных целей, которое определяется выражением

(6)

где k j (j=1,2,…,m) – коэффициенты, определяющие важность целей. Если цели имеют одинаковую важность, то k 1 =k 2 =…=k m =1. При этих значениях выражение (6) является математическим ожиданием числа уничтоженных целей. Требование, чтобы каждое средство было закреплено за какой либо целью, определяется выражениями

(i=1,2,…,m) (7)

Условия, что за каждой целью закрепляется не более одного средства поражения, определяются выражением

(j=1,2,…,n) (8)

В случае знака равенства во всех выражениях (8) имеет место m=n, в противном случае m

Найти такие целые значения x ij ³0 (найти такой план), удовлетворяющие условиям (7) и (8), которые обращают критерий эффективности (6) в максимум.

Как видно, эта задача линейного программирования, причем транспортного типа. В отличие от задачи на перевозку здесь ищутся значения x ij , принимающие только два возможных значения: 0 и 1.

При малых m и n задачи целераспределения могут решаться путем элементарных расчетов и рассуждений.

Задача. Разведкой обнаружены три равноценные цели противника. Для их уничтожения выделяется командованием три средства поражения. Известны вероятности поражения каждой цели любым средством (таблица 3).

Таблица 3.

Средства поражения

Количество

поражения

1

2

Количество целей

Требуется сформулировать задачу линейного программирования по критерию математического ожидания для данных условий и определить оптимальный план целераспределения.

Решение. Критерий эффективности в этой задаче согласно формуле (6) определяем выражением:

Здесь положено k 1 =k 2 =k 3 =1, т.к. все цели равноценны. Выражения (7) и (8) для условия задачи будут иметь вид:

(10)

(11)

Найти такие целые положительные корни x ij уравнений (10) и (11), при которых критерий эффективности (9) примет максимальное значение.

Для определения оптимального плана найдем в столбцах таблицы 3 максимальные значения вероятностей и отметим их звездочками. Очевидно, что за второй целью нужно закрепить 3-е средство (x 32 =1). Первое средство одинаково целесообразно закрепить за 1-ой или 3-ей целью. Но так как ближайшее значение к максимальной вероятности для 3-ей цели больше, чем для 1-ой, то целесообразно 1-ое средство закрепить за 1-ой целью (x 11 =1), a 2-oe средство за 3-ей целью (x 23 =1).

Максимальное значение математического ожидания числа пораженных целей будет равно:

При оптимальном плане будет поражено в среднем две цели. Для сравнения рассмотрим следующий план: x 13 =1, x 22 =1 и x 31 =1. При этом плане средние потери будут равны

Таким образом, только за счет оптимального целераспределения эффективность средств поражения может быть значительно повышена (в данном примере почти в два раза). Этот факт имеет не только экономическое значение, но и повышает оперативность выполнения задачи на поражение цели.

III. СИМПЛЕКС-МЕТОД.

Симплекс-метод решения задачи линейного программирования. Пусть дана система n линейных уравнений с m переменными (n

(3.22)

Предположим, что среди детерминантов n-го порядка, которые можно составить из коэффициентов n первых столбцов, отличен от нуля.

Тогда систему (3.22) можно разрешить относительно переменных x 1 , x 2 , …,x n которые, как и раньше, будем называть базисными переменными. В результате решения системы (3.22) базисные переменные будут выражены через остальные переменные x n+1 , x n+2 , …, x m , называемые свободными. Число свободных переменных k=m-n. Мы имеем решение системы (3.22) в виде:

(3.23)

Свободные переменные остаются произвольными. Давая им различные значения, получим все решения системы (3.22). Одно из решений найдем, если все свободные переменные приравняем к нулю. Тогда получим:

x 1 =b 1 , x 2 =b 2 , …, x n =b n ; x n+1 =x n+2 =…=x m =0

Если все числа b 1 , b 1 , …,b n неотрицательны, то мы будем иметь неотрицательное решение системы (3.22), соответствующее угловой точке (вершине) многогранника неотрицательных решений, это так называемое опорное решение.

Решить систему относительно базисных переменных x 1 , x 2 , …,x n , используя свойства определителей n-го порядка, очень удобно. Мы будем решать эту систему путем последовательного исключения неизвестных.

Запишем в виде таблицы коэффициенты уравнений (3.24) и элемент a 11 заключим в рамку

(3.27)

коэффициенты от неизвестных свободных членов отделим чертой, а элемент a 11 , заключенный в рамочку, будем называть разрешающим элементом.

Выпишем соответствующую таблицу для коэффициентов уравнений (3.26)

(3.28)

Коэффициент a’ 21 равен нулю

Из уравнения (3.25) следует, что

На таблице (3.27) соединим элемент a 2j c разрешающим элементом прямой линией. Рассмотрим прямоугольник, диагональю которого является проведенная линия. Эту диагональ будем называть первой диагональю. Второй диагональю является прямая, соединяющая элементы a 21 и a 1j , обведенные кружком. Как следует из формулы (3.29), чтобы получить элемент a 2j , нужно из произведения элементов первой диагонали вычесть произведение второй диагонали. Остальные элементы второй строки вычисляются по этому же правилу. Это правило напоминает правило вычисления детерминантов второго порядка, поэтому будем коротко называть его D-правилом.

Переход от таблицы коэффициентов (3.27) к таблице (3.28), совершаемый с помощью D-правила, будем называть симплекс преобразованием или S-преобразованием одной таблицы в другую.

Очевидно, для выполнения S-преобразования с помощью первого уравнения необходимо, чтобы коэффициент a 11 ¹0 в противном случае переменная x 1 в первом уравнении будет отсутствовать.

Если теперь возьмем первое уравнение системы (3.22) и третье и проделаем такие же вычисления, то исключим x 1 из третьего уравнения. Продолжая такие же вычисления, исключим x 1 из всех уравнений, кроме первого. Вычисления будем производить в следующем порядке. Сначала запишем таблицу коэффициентов системы (3.22)

(3.30)

Если a 11 ¹0, и мы хотим исключить x 1 с помощью первого уравнения, то принимаем элемент a 11 за разрешающий и в таблице (3.30) обводим его рамкой. Строка и столбец, в которых находится разрешающий элемент, называются соответственно разрешающей строкой и разрешающим столбцом. В таблице (3.30) это первая строка и первый столбец.

Применяя симплекс преобразование, перейдем к новой таблице. В новой таблице элементы разрешающей строки переписываются без изменений. Все элементы разрешающего столбца, кроме самого разрешающего элемента заменяются нулями.

Остальные элементы новой таблицы вычисляются по D-правилу. Например, для вычисления элемента a’ ij соединяем элемент a ij на таблице (3.30) с элементом a 11 прямой. В результате имеем первую диагональ. Вторая диагональ получается от соединения элементов a i1 и a 1j , обведенных на таблице кружками. По D-правилу имеем

При выполнении симплекс преобразования диагонали, изображенные на таблице (3.30), на самом деле проводить не нужно: они легко выделяются в уме.

Выполнив S-преобразование над таблицей (3.30), мы получим новую таблицу

(3.31)

Этой таблице соответствует система уравнений:

(3.32)

Система (3.32) эквивалентна первоначальной системе (3.22), но в системе (3.32) переменная x 1 исключена из всех уравнений, кроме первого. Если в таблице (3.31) элемент a’ 22 ¹0, то, приняв его за разрешающий элемент и проделав над таблицей (3.31) S-преобразование, получим новую таблицу. И в системе уравнений, соответствующей этой таблице, переменная x 2 будет исключена из всех уравнений, кроме второго.

Если в таблице (3.31) a’ 22 =0, то во втором столбце найдем элемент, не равный нулю, и примем его за разрешающий. Пусть это будет a’ 12 . Тогда выполняя симплекс преобразование над таблицей (3.31), мы исключим x 2 из всех уравнений, кроме i-того. Продолжая так дальше, мы после n преобразований придем к таблице, имеющей, например, следующий вид.


(3.33)

Таблице (3.33) соответствует система уравнений, эквивалентная первоначальной системе. Эта система уравнений имеет вид:

(3.34)

Можно считать, что система (3.34) решена относительно базисных переменных x 1 , x 2 , …, x n . Переносить члены, соответствующие свободным переменным, в правую часть для фактического решения системы (3.34) относительно базисных переменных не будем, так как в дальнейшем нас будет интересовать решение, где все свободные переменные равны 0.

Полагая x n+1 =x n+2 =…=x m =0, получим:

Если окажется, что x 1 ³0, x 2 ³0, …, x m ³0, то совокупность чисел (x 1 , x 2 , …, x n , 0, 0, …, 0) дает неотрицательное решение системы.

Рассмотрим пример. Дана система уравнений

Нужно данную систему разрешить относительно переменных x 1 , x 2 , x 3 . Следовательно свободными переменными будут x 4 , x 5 , x 6 . Напишем таблицу, соответствующую данной системе уравнений.

Решим систему относительно x 1 с помощью первого уравнения. За разрешающий элемент принимаем первый элемент первой строки, и подвергнем таблицу S-преобразованию. Получим новую таблицу, где первая строка переписывается, в первом столбце записываются нули, а остальные элементы вычисляются по D-правилу.

Этой таблице соответствует система уравнений, разрешенная относительно x 1 (x 1 входит только в первое уравнение). Исключить x 2 удобнее с помощью третьего уравнения, так как коэффициент при x 2 в третьем уравнении равен единице. Принимаем его за разрешающий элемент. Пишем новую таблицу

Система уравнений, соответствующая этой таблице, разрешена относительно x 1 и x 2 (x 1 входит только в первое уравнение, а x 2 только в третье).

Для разрешения системы относительно x 3 за разрешающий элемент берем коэффициент при x 3 во втором уравнении. Новая таблица имеет вид

Последняя таблица соответствует системе, решенной относительно базисных переменных x 1 , x 2 , x 3 . Полагая свободные переменные x 4 , x 5 , x 6 равными нулю, получим уравнения:

3x 1 =-18, откуда x 1 =6

3x 2 =-6, откуда x 2 =2

3x 3 =3, откуда x 3 =-1

Совокупность чисел x 1 =6, x 2 =2, x 3 =-1, x 4 =0, x 5 =0, x 6 =0 есть одно из решений данной системы. Оно не принадлежит к области допустимых решений, так как одна из координат x 3 отрицательна.

Для решения задачи линейного программирования важно уметь находить неотрицательные (опорные) решения данной системы уравнений.

Правило выбора разрешающего элемента при отыскании неотрицательного решения системы уравнений.

Пусть дана система уравнений

(3.36)

Если при выполнении симплекс преобразований при переходе от одной системы к другой будем следить за тем, чтобы разрешающие элементы были положительными, то на последнем этапе разрешения системы относительно базисных переменных получим систему вида (3.34) и по формулам (3.35) найдем неотрицательные значения базисных переменных. Составляем отношения свободных членов b k к положительным элементам a kj разрешающего столбца и среди чисел выбираем наименьшее значение. Если наименьшее значение достигается при k=i, то i-номер разрешающей строки, а разрешающим элементом будет a ij .

Рассмотрим пример отыскания неотрицательных решений системы уравнений.

Пример. Найти неотрицательное решение системы уравнений

Пишем таблицу, соответствующую данной системе


Пробуем разрешить эту систему относительно x 1 , т.е. переменную x 1 будем считать базисной переменной. Первый столбец будет базисным столбцом. Составляем отношения свободных членов к положительным элементам первого столбца 10/2=5; 4/7. Наименьшее из этих чисел 4/7. Числа 4 и 7 находятся во второй строке. Следовательно разрешающей строкой будет вторая строка и разрешающим элементом число 7. Выполняя симплекс преобразование, получим новую таблицу

Этой таблице соответствует система уравнений, разрешенная относительно базисной переменной x 1 . Так как обе части любого уравнения системы можно умножать и делить на любое постоянное число (система при этом будет эквивалентна прежней), то если строки таблицы имеют общий множитель, на него можно сократить. Последняя строка предыдущей таблицы имеет общий множитель 7; сокращая на него, получим таблицу


Введем в базис переменную x 3 , т.е. примем за разрешающий столбец третий столбец.

Из двух отношений 62/13 и 10/3 меньшим является второе. Следовательно, разрешающим элементом будет 3. Выполняя симплекс преобразование получим таблицу

Первую строку сокращаем на 28, вторую на 21

Введем в базис переменную x 2 . Разрешающим элементом будет 5. Снова выполняя симплекс преобразования, получим таблицу

Последнюю строку сокращаем на 3


Эта таблица соответствует системе уравнений, разрешенной относительно базисных переменных x 1 , x 2 , x 3 . Свободными переменными здесь являются x 4 и x 5 . Полагая свободные переменные равными нулю, получим:

5x 1 =12, x 1 =12/5; 5x 2 =2, x 2 =2/5; 5x 3 =18, x 3 =18/5;

Совокупность чисел x 1 =12/5; x 2 =2/5; x 3 =18/5; x 4 =0; x 5 =0

Дает неотрицательный ответ данной системы уравнений. Эти числа можно рассматривать как координаты угловой точки (вершины) множества (многогранника) допустимых решений.

ЛИТЕРАТУРА

Малявко К.Ф. «Применение математических методов в военном

Журко М.Д. «Математические методы и основы их применения

в управлении войсками».

Журнал Квант №6 за 1989г.

ISSN 1992-6502 (P ri nt)_

2014. Т. 18, № 1 (62). С. 186-197

Ъыьмт QjrAQnQj

ISSN 2225-2789 (Online) http://journal.ugatu.ac.ru

УДК 621.35, 004.02

Теория оптимального использования ресурсов Л. В. Канторовича в задачах раскроя-упаковки: обзор и история развития методов решения

Ю. И. Валиахметова, а. С. Филиппова

1 ФГБОУ ВПО «Башкирский государственный аграрный университет» (БГАУ) 2 ФГБОУ ВПО «Башкирский государственный педагогический университет им. М. Акмуллы» (БГПУ)

Поступила в редакцию 04.02.2014

Аннотация. Приводятся примеры постановок задач раскроя-упаковки, актуальность которых подтверждается их разнообразием и многогранностью прикладного значения. Основополагающими для развития методов решения подобных задач явились работы Л. В. Канторовича. Приведен обзор методов решения классических задач раскроя-упаковки, разработанных советскими и российскими учеными за последние 80 лет, в том числе и научными школами СССР и России. Даны краткие описания методов и история их развития.

Ключевые слова: раскрой; упаковка; рациональное использование ресурсов; оптимизация; точные методы; эвристические методы, алгоритмы

Посвящается 100-летию со дня рождения нобелевского лауреата Л. В. Канторовича

ВВЕДЕНИЕ

Вклад, сделанный замечательным и талантливым ученым Леонидом Витальевичем Канторовичем в различные области математики и экономики, имел огромное значение в развитии решения прикладных производственных задач. Кроме того, его концепция оптимальной экономической модели на макроэкономическом уровне и сегодня обладает огромным потенциалом. И в речи шведского профессора Рагнара Бентзеля, которую в 1975 г. он произнес, представляя лауреатов Нобелевской премии по экономике Л. В. Канторовича и Т. Купманса, отмечено всеобщее значение концепции для любой экономики, независимо от ее социально-политической формы: «Поскольку запас производственных ресурсов всюду ограничен, каждое общество сталкивается с кругом вопросов, касающихся оптимального использования имеющихся ресурсов и справедливого распределения доходов между гражданами. Точка зрения, с которой могут рассматриваться подобные нормативные вопросы, не зависит от политической организации рассматриваемого общества» . Поэтому исследование и разработка методов

Работа поддержана грантом РФФИ 12-07-00631-а.

решения задач рационального использования ресурсов актуальны и по сей день.

1. БАЗОВЫЕ МЕТОДЫ

ОПТИМАЛЬНОГО ИСПОЛЬЗОВАНИЯ РЕСУРСОВ

Основополагающую роль в становлении и развитии теории оптимального использования ресурсов и линейного программирования сыграла опубликованная профессором Л. В. Канторовичем в 1939 г. брошюра , где рассматривались различные практические задачи организации производства, в которых требовалось найти наилучший вариант решения. Книга была написана после консультации сотрудников Фанерного треста по вопросам решения задач, которые не удавалось решить традиционными в то время методами. Л. В. Канторович предложил метод разрешающих множителей (индексов), который устанавливает принципиальную возможность нахождения наилучшего решения для многих задач народного хозяйства, в том числе и для задачи массового раскроя. Несмотря на огромный круг научных интересов, в последующие годы Л. В. Канторович неоднократно возвращался к проблеме рационального раскроя, например .

В 30-х гг. прошлого века были заложены основы теории раскроя пиловочного сырья, основоположником которой стал Х. Л. Фельдман . Он предложил математический подход для

решения задачи о максимальных поставах при распиловке бревен. Вместе со своими последователями он создал систему, ориентированную на максимизацию объемного и качественного выхода обрезных пиломатериалов. Точная математическая схема решения не в полной мере учитывала реальные условия, такие как качественные характеристики сырья и пилопродукции, поэтому результаты на практике могли быть и неверными. Позднее В. А. Залгаллером разработан графический метод составления максимальных поставов, основанный на геометрическом признаке экстремума. Предложенный В. А. Залгаллером метод позволил приблизить теорию максимальных поставов к условиям производства .

Разработанная и усовершенствованная теория, однако, и в настоящее время не может дать ответа на многие проблемы технологии лесопиления, в связи с чем актуально ее дальнейшее совершенствование. Среди основных причин этого явления: технический прогресс, изменения размерно-качественной характеристики поступающего в раскрой пиловочного сырья и его породного состава, ужесточение требований экологов, изменение действующих стандартов на сырье и пиленую продукцию.

2. МНОГООБРАЗИЕ ЗАДАЧ РАСКРОЯ И УПАКОВКИ

Задачи раскроя представляют собой важную технологическую проблему, оптимальное решение которых позволяет минимизировать расход имеющихся ресурсов. Это такие задачи, как:

Раскрой линейного материала;

Продольная резка лент и рулонов;

Раскрой листов на прямоугольные заготовки;

Использование материалов смешанной длины;

Раскрой для серийных и несерийных изделий;

Упаковка трехмерных контейнеров;

Раскрой фигурных заготовок;

Размещение кругов;

Геометрическое покрытие областей с препятствиями элементами различной формы;

Задача о выборе наилучших размеров материала для последующего раскроя;

Упаковка/покрытие элементами случайных размеров,

и многие другие.

Подобные задачи встречаются на практике в машиностроении, металлургии, деревообраба-

тывающей и швейной промышленности, целлюлозно-бумажной индустрии и др.

Многие задачи, на первый взгляд не относящиеся к классу задач раскроя и упаковки, в конечном итоге сводятся к ним. Например, задачи о составлении расписания, задачи маршрутизации, задачи декомпозиции многосвязных ортогональных полигонов, а также многие другие прикладные задачи.

Если ценность раскраиваемого ресурса высока, на практике рассматривают также и остаточные задачи: производится попытка использовать отходы материала, получившиеся при решении предыдущих задач раскроя, упаковки или геометрического покрытия.

Задачи раскроя, упаковки или покрытия могут возникать как промежуточное звено в других задачах или же чередоваться в рамках одной задачи. Например, можно рассмотреть логистическую задачу, где каждому транспортному средству сопоставляется маршрут следования по потребителям и набор соответствующих этим потребителям грузов. Тогда поиск маршрута следования каждого транспортного средства, а также нахождение плана размещения грузов в грузовом отсеке являются задачами класса раскроя-упаковки. Дополнительно при размещении грузов можно учесть порядок следования транспортного средства - так, чтобы грузы, предназначенные последнему клиенту, загружались первыми .

Каждая из предметных областей вносит свои дополнительные требования в способ решения задач, и, следовательно, в способ адаптации известных алгоритмов.

В данной статье приведен краткий обзор методов решения классических задач раскроя-упаковки, разработанных советскими и российскими учеными за последние 80 лет. Под задачами раскроя-упаковки (Cutting and Packing, C&P) понимается широкий класс проблем, допускающих различное прикладное толкование. К ним можно отнести следующие задачи:

Раскрой запаса материала (при раскрое на определенные заготовки минимизация исходного материала);

Плотное размещение геометрических объектов в заданной области (размещение грузов, товаров на складе и т.п.);

Упаковка контейнеров (размещение предметов в ограниченную область);

Выбор ассортимента (выбор при заказе одного размера из стандартных);

Планировка помещений (максимизация полезных областей при планировании с учетом технологичных требований);

Обеспечение ритмичности производственного процесса (задачи о составлении расписания, составление расписания многопроцессорных систем);

Распределение производственных мощностей (распределение памяти вычислительной машины);

Задача о поставе в лесопилении (расположение пил при пилении бревна на доски разной толщины, выбор числа пил для максимизации выхода);

Раскрой древесного ствола по длине (максимизация продукции при раскрое ствола на круглые сортименты);

Раскрой досок (раскрой на заготовки, более близкие к окончательной продукции; обойти пороки и максимизировать суммарную кубатуру или суммарную коммерческую цену);

Раскрой листового материала на случайные заготовки (раскрой материала с учетом опережения-запаздывания производства заготовок);

Максимальное (минимальное) геометрическое покрытие (расстановка минимального количества единиц оборудования на заданной области) и др.

В свою очередь каждая из них может быть различным образом конкретизирована.

Общим для задач этого класса является наличие двух групп объектов. Между элементами этих групп устанавливается и оценивается соответствие. Различаются задачи линейного (одномерного), прямоугольного (двухмерного) и па-раллелепипедного (трехмерного) раскроя-упаковки. Среди этих задач выделяются гильотинный раскрой и упаковка. Особо выделены проблемы нестинга - размещения деталей сложной геометрической формы в заданных областях. Для них на первый план выступают информационные проблемы задания фигур, учета и обеспечения их непересечения, кодировки и др. Перечень геометрических свойств заготовок и материала может дополняться и учитываться в математической модели некоторыми физическими и/или экономическими показателями. Подробная классификация основных моделей задач С&Р в России приведена в .

В 40-х гг. методы для решения задач раскроя были направлены в первую очередь на задачи массового производства, где можно пренебречь целочисленностью результатов. Предложенный Л. В. Канторовичем способ решения подобных задач позволял найти оптимальный раскрой, однако трудоемкость процесса решения вручную требовала адаптации к производственным условиям и совершенствования вычислительного математического аппарата. Именно этому вопросу в основном и были посвящены научные разработки последователей и соратников Л. В. Канторовича до 50-60-х гг. Далее появилась возможность реализации алгоритмов на ЭВМ. Программы позволяли находить оптимальные планы раскроя мерных линейных материалов и оптимальных планов раскроя прямоугольных листов на прямоугольные заготовки. Начиная с 70-х гг. особое внимание исследователей этой области было направлено на решение задач единичного и мелокосерийно-го производства.

Впервые детально вопросы раскроя были проработаны Л. В. Канторовичем совместно с В. А. Залгаллером в Ленинградском отделении Математического института АН СССР в 40-х гг. . Практическая проверка успешности разработанных ими математических способов решения проведена на Ленинградском вагоностроительном заводе в 1948-1949 гг. Ввиду технологических требований и трудоемкости вычисления метода разрешающих множителей была проведена большая работа по развитию и адаптации математического аппарата к производственной действительности того времени за счет введения новых расчетных и технологичных приемов. Так, В. А. Залгаллер разработал способ подбора целочисленных индексов, предложил решение плоской задачи с помощью вспомогательной линейной задачи, приемы раскроя материала смешанной длины и различные технические приспособления. Все разработанные и практически апробированные методы того периода, методика их использования были описаны в книге «Рациональный раскрой промышленных материалов», изданной в начале 1951 г. . Задачи раскроя рассматривались авторами как примеры применения линейного программирования (Linear Programming, LP). При решении задач раскроя применяется модель LP с неявно заданной информацией о раскроях (столбцах матрицы). Фактически эта книга была отчетом об удачном практическом внедрении в 1948-1949 гг. линейного программирования для решения промышленных задач. Первые зарубежные же публикации, посвященные LP, отно-

сятся к 1949 г. Основные расчеты, приведенные в книге , были выполнены вручную. Для преодоления трудностей, связанных с построением допустимых карт раскроя, авторами были предложены приемы, которые, по существу, предвосхитили идеи динамического программирования.

Для решения задачи генерирования раскроя были разработаны основанные на динамическом программировании методы для задачи линейного раскроя , для гильотинного раскроя - сеточный метод генерирования раскроев с максимальной оценкой , считающие полную таблицу индексов. И. В. Романовский предложил метод склейки , ограничивающийся состояниями, соответствующими скачкам. Позднее Э. А. Мухачева разработала условные методы генерирования раскроев на каждом шаге процесса линейного программирования, учитывающие специфику реального производства . В то время основной целью этих и многих других работ являлось применение линейного программирования в сфере производственных задач. Эта цель в той или иной мере была достигнута в условиях массового и серийного производства.

3. ДЕЯТЕЛЬНОСТЬ СОВЕТСКИХ НАУЧНЫХ ШКОЛ ПО ИССЛЕДОВАНИЮ ЗАДАЧ РАСКРОЯ-УПАКОВКИ

Несомненно, развитие и широкое применение это направление получило с появлением ЭВМ: например, первая программная реализация на ЭВМ метода шкалы индексов . В приведен способ и программа для рационального решения массовой линейной задачи, затрачивающий приемлемое время для расчета. Расчет рациональных карт раскроя прямоугольных листов в 60-е гг. для большого числа заготовок (более 60) практически не представлялся возможным. А примеры меньшей размерности требовали многих часов работы программ на ЭВМ .

Так, применение ЭВМ для решения и исследования задачи массового раскроя в начале 60-х гг. прошлого века стало первым шагом для зарождения уфимской научной школы под руководством Э. А. Мухачевой. Элита Александровна Мухачева в 1962 г. поступила в аспирантуру Новосибирского академического городка института математики СО АН СССР в отдел к создателю теории линейного программирования Леониду Витальевичу Канторовичу и получила задание разработать программу для массового раскроя материала, результат описан в .

Приоритет Л. В. Канторовича в этой области уже был признан в мире, он заведовал матема-тико-экономическим отделом. Сотрудник отдела, ученик и соратник Л. В. Канторовича, доктор физико-математических наук Г. Ш. Рубинштейн стал научным руководителем Элиты Александровны. В начале 1967 г. она защитила диссертацию «Численные методы решения некоторых классов задач линейного программирования» на соискание ученой степени кандидата физико-математических наук1. С тех пор в Уфимском государственном авиационном техническом университете ведутся активные исследования в данной области.

Для задач штучного производства, являющихся по своей сути проблемами дискретной оптимизации, решение с помощью LP - это упрощение, позволяющее получить результат, близкий к оптимальному, при дополнительных ограничениях, возникающих в условиях серийного и массового производства. В дальнейшем задачи С&Р рассматривались уже без этого упрощения, как прикладные проблемы комбинаторных задач исследования операций. Задачи С&Р являются типичными представителями NP-трудных проблем. Ввиду неполиномиальной сложности точных алгоритмов для задач С&Р авторами многих работ и по сей день уделяется значительное внимание приближенным методам, а при разработке точных алгоритмов -процедурам сокращения полного перебора и вычислению нижних границ.

При решении задач С&Р необходимо минимизировать используемый материал (количест-

1 В 1983 г. Э. А. Мухачева (1930-2011) защищает докторскую диссертацию «Прикладные задачи комбинаторной оптимизации, в частности, задача раскроя и упаковки» и становится первой женщиной-доктором наук УАИ (Уфимского авиационного института). Работая над диссертацией, она консультировалась у Л. В. Канторовича, В. А. Залгаллера и в Новосибирском академическом городке. Из 59 лет работы в Уфимском авиационном университете (УАИ, УГАТУ) 34 года заведовала кафедрами. Научная значимость трудов Э. А. Мухачевой и ее учеников колоссальна. Студенты, аспиранты, ученые нашей страны изучали математическое программирование, математические методы исследования операций, теорию и методы расчета в задачах раскроя-упаковки по учебникам, монографиям и статьям, автором которых является Э. А. Мухачева. Многие из ее последователей по сей день продолжают разработки в России и за рубежом. Результаты многочисленных работ внедрены, например, на Кировском заводе (г. Ленинград), при производстве тракторов на Ижевском механическом заводе, в Ульяновском авиационном комплексе и др.

во, площадь или объем). При этом оптимальное значение будет больше либо равно нижней границы и меньше либо равно верхней границы.

С помощью границ оценивается решение, полученное тем или иным методом. Верхняя граница, например, полученная приближенно любым эвристическим методом и уточняемая в ходе вычислений, применяется в методе ветвей и границ для сокращения множества просматриваемых узлов дерева решений: отсеиваются узлы, у которых оценка не меньше верхней границы.

При решении задач точными методами использование границ позволяет сократить время работы алгоритма. Так, большее время работы точного алгоритма затрачивается на доказательство оптимальности найденного решения, возможно, полученного уже в начале вычислений. Для этого этапа как раз очень важна нижняя граница, значение которой должно быть максимально близко к оптимуму. Проблема подсчета нижних границ остается основной при разработке эффективных точных методов решения задач С&Р. Особый интерес для вычислений представляют уточняемые нижние оценки, они позволяют либо быстро отсекать «слабые» частичные решения либо просто остановить вычисления по достижении достаточно хорошего результата. В предложен метод построения нижних границ, основанный на линейной релаксации. Показано, что оптимальное значение исходной задачи можно оценить с помощью решения соответствующей задачи линейного раскроя. Предложено уточнение этой нижней границы, использующее метод фиксации определенных переменных.

Традиционными для единичных проблем С&Р являются математические модели целочисленного линейного программирования (ЦЛП). Но надо отметить и другие, например, предложенные в начале XXI в.: матричная модель - представление прямоугольной упаковки двумя бинарными матрицами, характеризующими всевозможные пересечения прямоугольников с сечениями контейнерной области параллельно координатным осям ; модель, предложенная В. Н. Марковым, в которой лист материала описывается растровой последовательностью точек .

Методы, основанные на ЦЛП, оказались приемлемыми для решения задач линейного (одномерного) и гильотинного раскроя. Что касается классов задач негильотинной упаковки, то алгоритмы LP вряд ли можно сейчас считать подходящими для их решения. Пока для этих задач большинство существующих точных ме-

тодов решения сводятся к перебору всего множества допустимых решений. Методы улучшенного перебора объединены и для этих задач под названием «метода ветвей и границ». Еще в 1973 г. И. В. Романовский и Н. П. Христова предложили для решения дискретных минимаксных задач метод дихотомии . Для получения нижней оценки в авторы предложили использовать релаксацию задачи, переходя от множества допустимых решений к некоторому его подмножеству.

В 60-х гг. в г. Харькове под руководством В. Л. Рвачева и Ю. Г. Стояна разрабатываются подходы к решению задач с фигурными заготовками . Для описания фигур, ограниченных контуром из конечного числа отрезков и дуг окружностей, вводятся специального типа Я-функции, которые позволяют определить принадлежность точки к фигуре одним неравенством, что позволяет упростить проверку непересечения фигур между собой. Поиск оптимальных размещений осуществляется методом составления большого числа случайных ненале-гающих положений, каждое из которых затем переводится градиентным методом в локально минимальное положение. Этот подход получил и дальнейшее развитие. Используемые как средство математического и компьютерного моделирования R-функции внесли существенный вклад в формализацию 2D- и 3D-задач С&Р и разработку методов их решения .

Следует отметить значительный вклад, внесенный в теорию и практику моделирования размещения геометрических объектов научной школой Ю. Г. Стояна (Украина, Институт проблем машиностроения НАН). В конце 60-х гг. на базе Уфимского авиационного института под руководством Э. А. Мухачевой зарождается еще одна научная школа, в которой активно и по сей день занимаются проблемами С&Р, в том числе и задачами с произвольной формой заготовок . Начиная с 60-х гг. ведутся исследования задач фигурного раскроя в Горьковском университете, в коллективе Л. Б. Беляковой, в Институте технической кибернетики АП БССР, г. Минск. В это же время упрощенными алгоритмами для решения задач фигурного раскроя с применением ЭВМ занимаются на многих производственных предприятиях СССР .

Подробнее обзор публикаций до 70-х гг. представлен в дополненном втором (1951 г.) и третьем (2012 г.) изданиях книги . Третье переиздание было подготовлено с участием В. А. Залгаллера.

альных условий, касающихся различных отраслей: металлургии, судостроения, деревообработки, бумажной и швейной промышленности. Например, в Карельском институте лесной промышленности под руководством И. В. Соболева , в Петрозаводском государственном университете под руководством В. А. Кузнецова ведется работа, связанная с применением методов оптимизации на промышленных предприятиях Карелии и Северо-Запада России. Здесь развиваются методики решения оптимизационных задач в целлюлозно-бумажной промышленности . Они реализованы в комплексах прикладных программ, направленных на решение проблем, связанных с раскроем и планированием работ в деревообрабатывающей промышленности. Помимо задач, связанных непосредственно с раскроем, рассматриваются технологические проблемы при организации производства: для удобства комплектации необходимо производить одновременно или почти одновременно все детали изделия, выпускаемого в данный момент, а особенности предварительного раскроя ограничивают возможности укладки этих деталей в прямоугольники, что приводит к большим отходам. Это, например, распиловка бревен, раскрой гофрокартона.

В 70-х гг. в Омском государственном университете под руководством А. А. Колоколова также начинаются исследования и разработки алгоритмов решения задач дискретной оптимизации, сводящихся к задачам раскроя-упаковки. Основное внимание этой научной группы уделено задачам линейного целочисленного программирования, прикладным задачам размещения, задачам раскроя, встречающимся в легкой промышленности и швейном производстве. Разработаны и исследованы новые алгоритмы и подходы, основанные на использовании регулярных разбиений релаксационных множеств, L-разбиений. Надо отметить, что решением проблем с автоматизацией процесса раскроя занимаются и по сей день в Омске , Новосибирске . Обзор существующих САПР конструкторской и технологической подготовки производства одежды представлен в . Хотя главной задачей этих систем является моделирование индивидуальной и мелкосерийной одежды, а процесс раскроя материала не использует сложных оптимизационных методов расчета. Можно отметить работы А. А. Петунина проводимые в Екатеринбурге с конца 70-х гг., которые направлены на автоматизацию проектирования раскроя листового материала, . Они позволили позже разработать универсальную систему «Сириус» с собствен-

ным графическим интерфейсом, ориентированную на широкий спектр оборудования для резки листовых материалов .

4. СОВРЕМЕННОЕ РАЗВИТИЕ МЕТОДОВ РЕШЕНИЯ ЗАДАЧ РАСКРОЯ-УПАКОВКИ

Новые эффективные точные методы развивались по нескольким направлениям. С одной стороны, совершенствовались инструменты ЦЛП: моделирование, методы ветвлений, секущие плоскости. С другой стороны, развивались чисто комбинаторные методы, получившие позже наиболее полное развитие в рамках методов искусственного интеллекта.

Например, в представлен гибридный метод непрерывной оптимизации и переборного алгоритма решения задачи упаковки многоугольников, где в качестве частного случая рассматривается задача упаковки прямоугольников в полосу, разработана стратегия построения множества систем уравнений и набора правил для отсечения бесперспективных вершин дерева решений. Этот метод получил и дальнейшее развитие в конце 90-х гг.

Задача одномерного раскроя с единичными комплектностями является наиболее подходящей для решения комбинаторными методами. Одним из первых был метод ветвей и границ на основе релаксации ЛП с генерацией столбцов. В большинстве вариантов метода ветвление осуществляется по отдельным столбцам. В работе автор для данной задачи применяет дихотомический вариант обобщенного метода решения дискретных минимаксных задач . В нем на каждом этапе ветвление по дереву решений происходит по двум подмножествам, что сокращает перебор допустимых решений. Для задач одномерного раскроя с целочисленными комплектностями - 1D cutting-stock problem (1DCSP) - методы ЦЛП являются более эффективными вследствие комбинаторного взрыва. В большинстве из них используется модель 1DCSP с генерацией столбцов, впервые предложенная в работе Л. В. Канторовича и А. А. Залгаллера . Эта модель имеет очень маленький эмпирический разрыв двойственности. Количество переменных модели не ограничено полиномиально от размерности задачи (количества предметов), поэтому довольно трудно оценить количество столбцов, генерируемых при поиске оптимума. На практике задача быстрого нахождения ЛП оптимума, т. е. вопрос ускорения сходимости процесса генерации столбцов, является очень актуальной.

Вопрос об эффективном применении точных комбинаторных методов решения задач раскроя-упаковки большой размерности остается открытым до сих пор. Ведутся исследования для определения отсечений, которые позволяют не рассматривать симметричные варианты правил сокращения перебора. Например, в рассмотрен метод с процедурами доминантности, группировки, определения допустимого резерва, позволяющий сократить перебор.

Математический аппарат, позволяющий вычислить оптимум в негильотинной задаче C&P за конечное число операций впервые предложен в , где задача упаковки прямоугольников сформулирована как проблема комбинаторной оптимизации и предложен «метод зон» для нахождения оптимального решения. На основе понятия «зоны» доказывается, что для любой упаковки прямоугольников можно указать такой их порядок, при котором каждый следующий прямоугольник не пересекается ни с одной из зон предыдущих (топологическая сортировка). Показано, что среди упаковок, построенных на ступенчатых границах, есть оптимальные. Для сокращения числа вариантов предложен ряд отсечений, позволяющих отбрасывать варианты, симметричные уже рассмотренным, или заведомо не лучше других.

Для решения комбинаторных задач из класса NP-трудных с успехом применяются эвристические методы. Среди эвристик высокого уровня выделяются жадные алгоритмы, позволяющие достигать верхние границы . К многопроходным эвристикам относится метод последовательного уточнения оценок (Sequential Value Correction, SVC), берущий начало от идеи объективно-обусловленных оценок Л. В. Канторовича . Метод SVC реализуется по модифицированной схеме «первый подходящий с упорядочиванием» с процедурами приоритета и повторения. Упорядочивание элементов основано на экономическом смысле двойственных переменных в линейном программировании. Метод можно назвать общим для решения задач C&P: он применим для задач линейного и гильотинного раскроя, 2D- и SD-упаковки, а также и для фигурного раскроя .

При реализации схем построения решений в комбинаторных задачах используют различные способы представления допустимого решения в виде кода, который с помощью соответствующего правила (декодера) однозначно преобразуется в план упаковки. Способы кодирования и декодирования существенным образом влияют на эффективность получаемых решений. При этом сам декодер является однопроходным ме-

тодом. Простым и популярным декодером является «нижний левый», который однозначно позволяет получить план упаковки по коду в виде последовательности (списка) прямоугольных деталей. В уфимском коллективе разработаны новые блочные декодеры , позволяющие представить прямоугольную упаковку в виде линейного раскроя специальной структуры, для которой используются линейные методы решения, за счет чего получают быстрые и эффективные решения. Аналогично представляется и 3D-упаковка.

Если при выбранном способе декодирования повторять решение, несколько изменяя уже использованный код, то значение целевой функции изменится в лучшую или худшую сторону. При многократном повторении можно получить достаточно хорошее решение. На этом принципе в сочетании с комбинацией различных декодеров разработаны технологии конструирования алгоритмов локального поиска для C&P .

Таким образом, внесение в детерминированный алгоритм элементов случайности повышает его результативность. Так, например, повысилась эффективность упомянутого выше алгоритма SVC после внесения в него элементов стохастики. Бурное развитие вероятностных методов локального поиска оптимума началось 20 лет назад с появлением метаэвристик для решения NP-трудных задач. В России обзор вероятностных методов локального поиска оптимума для NP-трудных задач сделан в . В обзоре обсуждаются общие схемы алгоритмов поиска с запретами, имитации отжига, эволюционного и генетических алгоритмов. Показано, что эти разные по своей структуре алгоритмы используют общую математическую конструкцию конечных цепей Маркова, а также доказывается, что при корректной реализации процедур поиска указанных метаэвристик, когда отсутствует эффект «застревания» в локальном оптимуме, будет наблюдаться сходимость по вероятности наилучшего найденного решения к оптимальному решению задачи.

Первыми среди сложных метаэвристик для задач C&P стали применяться генетические алгоритмы. Возможны различные способы кодирования и приемы идентификации простейших структур (ген, аллели, хромосома). Это порождает различные классы генетических алгоритмов . Генетические алгоритмы успешно разрабатываются и для решения задач фигурного раскроя . Исследуются и используются и другие метаэвристики. Кроме того, в последние

годы активно развивается применение искусственного интеллекта .

Изменения в стране, начатые в 80-х гг., позволили российским ученым активно публиковать свои работы за рубежом в изданиях, посвященных исследованиям операций, участвовать в международных конференциях. Сообщество под названием SICUP (Специальная группа по интересам в области раскроя-упаковки) объединяет многих исследователей, заинтересованных в данной проблеме по всему миру. SICUP организует сессии по проблемам С&Р в рамках международных конференций. Было принято решение об организации нового сообщества ESICUP (http://pagmas.fe.up.pt/~esicup/tiki-

index.php). И обратная ситуация - участие зарубежных исследователей в российских специальных изданиях , совместные исследования, например .

В СССР проводились научно-практические семинары и конференции в Ленинграде, Уфе, Звенигороде и других городах. В современный период организуются секции в рамках работы конференций: Математическое программирование и приложения (Екатеринбург, ИММ УРО АН РФ); Дискретный анализ и исследование операций (DAOR, Новосибирск, ИМ СО РАН); Компьютерные науки и информационные технологии (CSIT, Уфа, УГАТУ); Ресурсосберегающие технологии (ОПТИМ, С.-Петербург); Методы оптимизации и их приложения (Байкальская международная конференция по математическому программированию, Иркутск); Дискретная математика и экономические приложения (Омск, филиал ИМ СО РАН) и др.

В последнее десятилетие теоретические аспекты проблемы раскроя-упаковки и геометрического покрытия в виду их NP-сложности остаются актуальными. Основное внимание российских научных исследований методов и задач C&P связаны не только с усовершенствованием эффективности методов их решения, но и с проблемами в которых задачи раскроя и упаковки включены в качестве подзадач. Это накладывает дополнительные условия и ограничения в постановке задач. Например: в лесопромышленности, в легкой промышленности, при проектировании электронных схем, в транспортной и складской логистики, в строительной и судостроительной отраслях и др.

Так, например, в работах исследуются задачи планирования производства гофро-тары, выбора транспортных средств и размещения продукции, планирования производства пиломатериалов, планирования погрузки водного транспорта, раскроя и комплектовки в модели-

ровании технологических процессов в условиях стохастики производственного процесса, рассматриваются критерии эффективности подобных задач.

Теоретические предпосылки для создания автоматизированной системы управления раскроем в швейной промышленности описаны в работе , исследуется проблема параметрического моделирования сложных трехмерных объектов и его применения. В работе приведен краткий обзор существующих САПР конструкторской и технологической подготовки производства одежды. Одной из первых разработок в области САПР для конструктора швейных изделий явилась белорусская система «АВТОКРОЙ» (г. Минск), функционирующая в 80-е гг. в НПО «Белбыттехника». Первой системой, предназначенной специально для конструирования одежды с помощью персонального компьютера, стала система ЛЕКО, разработки Центрального научно-производственного института швейной промышленности (ЦНИИШП). В настоящее время систему используют небольшие швейные и трикотажные предприятия, а также вузы, ведущие подготовку специалистов в области проектирования швейных изделий. Вслед за ЛЕКО появляется серия САПР: Система АССОЛЬ (Центр компьютерных технологий при Московском физико-техническом институте); Система T-FLEX/ОДЕЖДА использует типовые методики конструирования; ГРАЦИЯ и др. Одной из последних разработок стала система ELEANDR-CAD (Научно-технический центр дизайна и технологии при МГУДТ и компания ООО «Элеандр», 2003). В работе авторы исследуют задачу о минимальном покрытии на примере проектирования меховых изделий.

Исследования показали, что задачи, в которых требуется сформировать в определенном смысле оптимальное множество объектов (машин, наборов моделей одежды, приемов, свойств), покрывающее «потребности» другой совокупности (работ, клиентов, заказов, характеристик) при выполнении некоторых условий, обусловленных спецификой задачи, могут быть сведены к задачам о покрытии и различным их модификациям. На основе разработан гибридный алгоритм для решения задач оптимизации выбора объектов в процессе технической подготовки производства, в том числе при определении доминирующих свойств материалов, на примере легкой промышленности. Оригинальный подход к исследованию связи проблем ортогонального раскроя и покрытия на примере задач построения маршрутов, удовлетворяющих определенным ограничениям, приведен Т. Па-

нюковой, . Автором замечено, что в задачах раскроя листового материала плоский граф является моделью раскройного плана, а маршрут, покрывающий все ребра, определяет траекторию режущего инструмента. В работе приведена модификация алгоритма построения покрытия с упорядоченным охватыванием на случай многосвязного графа. Построение покрытия графа с упорядоченным охватыванием решает поставленную задачу раскроя. Наибольший интерес представляют покрытия с минимальным числом цепей, поскольку переход от одной цепи к другой соответствует холостому проходу режущего инструмента.

Пример применения генетических алгоритмов для автоматизации размещения разногабаритных тепловыделяющих элементов в электронных модулях трехмерной компоновки на основе теплового критерия приведен в работе .

Решению задачи размещения грузов в грузовых отсеках транспортных средств, возникающей в качестве подзадачи в логистических системах, посвящены многие работы. Например, в решается задача управления загрузкой контейнеров с учетом их физических характеристик, в для этой задачи осуществляется учет условия технологичной загрузки-разгрузки потребительских товаров, т.е. последовательность посещения клиентов при доставке грузов.

В работе предложен алгоритм решения задачи, возникающей, например, в строительной индустрии - задачи геометрического покрытия многосвязного полигона ортогональным ресурсом. Исходной информацией являются размеры покрываемой области и имеющегося ортогонального ресурса, а размеры покрывающих элементов, которые необходимо впоследствии раскроить из ресурса, заранее не определены. Это обуславливает многокритериальную оптимизацию процесса построения взаимосвязанных рациональных планов геометрического покрытия прямоугольными элементами незаданных размеров и раскроя ортогонального ресурса на покрывающие элементы.

Технологические особенности раскройного оборудования обуславливают появление задач проектирования управляющих программ для машин листовой резки. В работе автором отмечается важность проблемы стоимости и значимости различных этапов процесса вырезания заготовок из материального ресурса, таких как, например, перемещение режущего инструмента в другое место раскраиваемого листа и новой резки. Таким образом, кроме плотного размещения заготовок на плане раскроя, целевая функция направлена на оптимизацию маршрута

режущего инструмента с учетом стоимости ре-зов, новой врезки.

Значительное внимание уделяется также и теоретическим разработкам проблемы раскроя и упаковки. Например, в работах рассмотрены задачи упаковки гофров (ортогональных связных многоугольников) с позиций общей теории проблемы оптимального размещения геометрических объектов, предложены алгоритмы упаковки «-мерных гофров на базе методов линейного программирования, а также модели и методы оптимизации упаковки «-мерных параллелепипедов.

ЗАКЛЮЧЕНИЕ

Многообразие раскройных задач вместе со значимостью их рационального решения обуславливает неугасающий интерес опытных и молодых исследователей всего мира к этой проблематике, с чем связана устойчивая тенденция роста численности новых методик для их решения.

В задачах C&P замечательным образом сочетается их широкая практическая применимость и их принадлежность к NP-трудным проблемам, что делает эту проблематику важным полигоном новых исследований. Благодаря этому идеи Л. В. Канторовича будут использоваться и развиваться в различных сферах научной и практической деятельности человека, связанной с проблемой раскроя.

СПИСОК ЛИТЕРАТУРЫ

1. Канторович Л. В. Математика, менеджмент, информатика: монография / ред.: Г. А. Леонов, В. С. Катькало, А. В. Бухвалов, СПб.: Высш. шк. менеджмента: Издательский дом Санкт-Петербургского ун-та, 2010. 575 с. [ L. V. Kantorovich, Mathematics, management, informatics: monograph, (in Russian). Edited by G. A. Leonov, V. S. Katcalo, and A. V. Buhvalov, St.Ptsb.: Management higher school: St. Petersbourg University Publishing House, 2010. ]

2. Канторович Л. В. Математические методы организации и планирования производства. ЛГУ, 1939. 67 с. . [ L. V. Kantorovich, Mathematical Methods of Production Management and Planning, (in Russian). Leningrad: Leningrad Univ., 1939.]

3. Канторович Л. В. Рациональные методы раскроя металла // Произв.-техн. бюл. НК Боеприпасов СССР. 1942. № 7-8. С. 21-29. [ L. V. Kantorovich, "Efficient Methods of Metal Cutting," (in Russian), Product.-techn. bulletin. of NK Ammunition of the USSR, no. 7-8, pp. 21-29, 1942. ]

4. Фельдман Х. Л. Система максимальных поставов на распиловку. М.: Гостехиздат, 1932. [ H. L. Feldman, Maximum delivery system for sawing, (in Russian). Moscow: Gostehizdat, 1932. ]

5. Залгаллер В. А. Новое в составлении поставов для распиловки бревен. Л.:ЦНИИЛ «Севзаплес», 1956. Вып. 67. [ V. A. Zalgaller, A step forward in delivery formation for timber sawing, (in Russian). Leningrad: CNIIL "Sevzaples", vol. 67, 1956. ]

6. Валиахметова Ю. И., Мухачева Э. А., Филиппова А. С., Гильманова Н. А., Карипов У. А. Мультиметодная

технология ортогональной упаковки и ее применение в задачах транспортной логистики // Приложение к журналу «Информационные технологии». 2009. № 12. 31 с. [ U. I. Valiahmetova, et al., "Multimethod technology of orthogonal bin-packing and its application in transport logistics problems," (in Russian), in Appendix to Magazine Information technologies, no. 12, 2009. ]

7. Мухачева Э. А., Мухачева А. С., Валеева А. Ф., Картак В. М. Методы локального поиска в задачах ортогонального раскроя и упаковки: аналитический обзор и перспективы развития // Информационные технологии. 2004. № 5. Приложение. С. 2-17. [ E. A. Mukhacheva, et al., "Local search methods in orthogonal cutting-packing problems: analytical survey and development outlook," (in Russian), in Appendix to magazine Information Technologies, no 5, pp. 2-17, 2004. ]

8. Канторович Л. В., Залгаллер В. А. Расчет рационального раскроя материалов. Лениздат, 1951. 198 с. [ L. V. Kantorovich and V. A. Zalgaller, Computation of effective material cutting , (in Russian). Lenizdat, 1951. ]

9. Булавский В. А., Яковлева М. А. О решении задачи оптимального раскроя линейных материалов на ЭВМ // Линейное программирование: Труды Науч. совещ. о применении матем. методов в экон. исслед и планировании. М.: АН СССР, 1961. Т. IV. С. 83-87. [ V. A. Bulavski and M. A. Jakovleva, "To solution of problems of linear material cutting on COMPUTER," (in Russian), in Linear programming. Papers of scientific conference on mathematical method application in econom. research and planning, vol. IV. Moscow: AS USSR, 1961, pp. 83-87. ]

10. Мухачева Э. А. Рациональный раскрой прямоугольных листов на прямоугольные заготовки // оптимальное планирование: c6. науч. тр. СО АН СССР. 1966. Вып. 6. С. 43-115. [ E. A. Mukhacheva, "Effective cutting of rectangular sheets to rectangular items," (in Russian), in Optimal planning: Collection of scientific papers SO AS USSR, Issue 6, pp. 43-115, 1966. ]

11. Романовский И. В. Решение задачи гильотинного раскроя методом переработки списка состояний // Кибернетика. 1969. № 1. С. 102-104. [ I. V. Romanovski, "Solution of guillotine cutting problem by the method of sorting out of the state list," (in Russian), Cybernetics, no. 1, pp. 102-104, 1969. ]

12. Мухачева Э. А. Методы условной оптимизации в задаче рационального раскроя листового проката // Оптимизация: c6. науч. тр. СО АН СССР. 1978. Вып. 22. С. 83-93. [ E. A. Mukhacheva, "Methods of conditional optimization in the problem of effective cutting of sheet rolling," (in Russian), in Optimization: Collection of scientific papers SO AS USSR, 1978, Issue 22, pp.83-93. ]

13. Романовский И. В. Программа решения задачи линейного раскроя. - Оптимальное планирование. Новосибирск. 1969. Вып.12. [ I. V. Romanovski, "Program of solving the linear cutting problem," (in Russian), in Optimal planning, Novosibirsk, 1969, Issue 12. ]

14. Картак В. М. Обновленная нижняя граница для задачи упаковки прямоугольников в полубесконечную полосу // Вестник УГАТУ. 2008. Т. 10, № 2 (27). С. 154-158. [ V. M. Kartak, "A new low bound for orthogonal packing problem," (in Russian), Vestnik UGATU, vol. 10, no. 2 (27), pp. 154158, 2008. ]

15. Belov G., Kartak V., Rohling H., Scheithauer G. One-dimensional relaxations and LP bounds for orthogonal packing // ITOR, 2009. Vol. 16. P. 745-766. [ G. Belov, et al. "One-dimensional relaxations and LP bounds for orthogonal packing," ITOR, vol. 16, p. 745-766, 2009. ]

16. Картак В. М. Матричный алгоритм поиска оптимального решения для задачи упаковки прямоугольников в полубесконечную полосу // Информационные технологии. 2008. № 2. С. 24-30. [ V. M. Kartak, "Matrix algorithm for searching the optimum solution of rectangular packing in a semi-endless strip," (in Russian), Information technologies, no. 2, pp.24-30, 2008. ]

17. Марков В. Н. База знаний для негильотинного раскроя-упаковки // Информационные технологии. 2007. № 4. С. 17-23. [ V. N. Markov, "Basic knowledge for nonguillotine cutting-packing," (in Russian), Information technologies, no 4, pp. 17-23, 2007. ]

18. Романовский И. В., Христова Н. П. Решение дискретных минимаксных задач методом дихотомии // Ж. вычислит. математики и матем. физики. 1973. Т. 13, № 5. С. 1200-1209. [ I. V. Romanovski and N. P. Hristova, "Solution of discrete minimax problems by dichotomy method," (in Russian), J. of calculat. math. and math. Physics, vol. 13, no. 5, pp. 1200-1209, 1973. ]

19. Стоян Ю. Г., Яковлев С. В. Математические модели и оптимизационные методы геометрического проектирования. Киев: Наукова думка, 1986. 268 с. [ U. G. Stojan and S. V. Jakovlev, Mathematical models and optimization methods of geometrical projecting, (in Russian). Kiev: Naukova dumka. 1986. ]

20. Рвачев В. Л., Стоян Ю. Г. К задаче об оптимальном размиещении круговых выкроек // Кибернетика. 1965. № 4. [ V. L. Rvachev and U. G. Stojan, "To the problem of optimal placement of round patterns," (in Russian), Cybernetics, no. 4, 1965. ]

21. Stoyan Y., Terno J., Romanova T., Scheithauer G.

Construction of a Ф-function for two convex polytopes // Applications Mathematicae. 2002. V. 2, No. 29. P. 199-218. [ Y. Stoyan, J. Terno, T. Romanova, and G. Scheithauer, "Construction of a Ф-function for two convex polytopes," Applications Mathematicae, vol. 2, no. 29, pp. 199-218, 2002. ]

22. Verhoturov M. A., Sergeyeva O. Y. The sequential value correction method for the two-dimensional irregular cutting stock problem // PO. 2000. Vol. 20, № 2. P. 233-247. [ M. A. Verhoturov and O. Y. Sergeyeva, "The sequential value correction method for the two-dimensional irregular cutting stock problem," vol. 20, no. 2, pp. 233-247, 2000. ]

23. Бабаев Ф. В. Рациональный раскрой листа на детали сложных геометрических конфигураций // Сварочное произв. 1968. № 8. [ F. V. Babaev, "Effective sheet cutting into items of complex geometric configurations," (in Russian), Welding production, no. 8, 1968. ]

24. Канторович Л. В., Залгаллер В. А. Рациональный раскрой промышленных материалов. 3-е изд. СПб: Невский Диалект, 2012. 304 с. [ L. V. Kantorovich and V. A. Zalgaller, Effective cutting of industrial material, Issue 3, (in Russian). St. Petersbourg: Nevskij dialect, 2012. ]

25. Соболев И. В. Управление производством пиломатериалов. М.: Лесн. пром-сть, 1981. 181 с. [ I. V. Sobolev, Timber production control, (in Russian). Moscow: Timber prod., 1981. ]

26. Кузнецов В. А., Шегельман И. Р. Применение математических методов и ПЭВМ на лесоразработках. СПб.: СПбЛТА, 1988. 68 с. [ V. A. Kuznetsov and I. R. Shegelman, Application of mathematical methods and PC in logging areas, (in Russian). St.Petersbourg: Publishing house St. Ptsb, LTA, 1988. ]

27. Кузнецов В. А. Задачи раскроя в целлюлозно-бумажной промышленности. СПб.: СПбЛТА, 2000. 132 с. [ V. A. Kuznetsov, Cutting problems in pulp and paper industry, (in Russian). St. Ptsb: Publishing house St. Ptsb. LTA, 2000. ]

28. Колоколов А. А. О числе отсекающих плоскостей в первом алгоритме Гомори // Проблемы анализа дискретной информации. Новосибирск: ИЭиОПП СО АН СССР, 1975. С. 84-96. [ A. A. Kolokolov, " About the number of cut-ting-off planes in the first algorithm of Gomory," (in Russian), in Problems of discrete information analysis, Novosibirsk: IEOIP SO AS USSR, 1975, pp.84-96. ]

29. Колоколов А. А. Регулярные разбиения и отсечения в целочисленном программировании // Сибирский журнал исследования операций. 1994. № 2. С. 18-39. [ A. A. Kolokolov, "Regular splitting and cutting off in integr programming," (in Russian), Siberian journal of operational research, no. 2, pp. 18-39, 1994. ]

30. Колоколов А. А., Коробова А. Б., Захарова Е. О., Привалова Ю.И. Разработка моделей дискретной оптимизации для формирования коллекции подростковой одежды // Омский научный вестник. 2006. № 7 (43). С. 138-140. [ A. A. Kolokolov, et al., "Development of discrete optimization models for designing teenagers" clothes," (in Russian), The Omsk scientific bulletin, no. 7 (43), pp. 138-140, 2006. ]

31. Фроловский В. Д., Фроловский Д. В. Моделирование и развертка сложных поверхностей в AutoCAD R14 // САПР и графика. 1998. № 3. С. 74-75. [ V. D. Frolovski and D. V. Frolovski, "Modeling and evolvent of complex surfaces in AutoCAD R14," (in Russian), SAD and graphics, no. 3, pp.74-75, 1998. ]

32. Ландовский В. В., Пищинская О. В., Фролов-ский В. Д. Моделирование процесса проектирования одежды на женские фигуры с нарушениями осанки. // Известия высших учебных заведений. Северо-Кавказский регион. Серия техн. наук. 2009. № 6. С. 114-118. [ V. V. Landovski, O. V. Pischinskaja, and V. D. Frolovski, "Modeling of the process of designing clothes for women"s figures of defect posture," (in Russian), Bulletin of highest schools, North-Caucasus region. Series tech. science, no. 6, pp. 114118, 2009. ]

33. Коробцева Н. А. САПР одежды: исторический экскурс и обзор существующих систем // Текстильная промышленность. 2003. № 5. С. 61-62; № 6. С. 63-65. [ N. A. Korobtsev, "SAD of clothing: historical excursus and present systems review," (in Russian), Textile industry, no. 5, pp. 61-62, no. 6, pp. 63-65, 2003. ]

34. Петунин А. А. Интегрированная САПР «Сириус» для автоматизации раскройно-заготовительного производства. Концепция. Опыт разработки и внедрения // Ресурсосберегающие технологии: математическое обеспечение оптимизационных задач в системах автоматизированного проектирования: сб. докл. 1-й Всерос. науч.-практ. конф. по вопросам решения оптимизационных задач в промышленности. СПб: ЦНИИТС, 2001. C. 126-129. [ A. A. Petunin, "Integrated SAD "Sinus" for automation of cutting--logging production. Concept. Experience of development and implementation," (in Russian), in Resource-saving technologies: Mathematical ensuring of optimization problems in systems of automat designing: Collection of reports 1st All-Union scientific--practical conference on solution of optimization problems in industry, St. Ptsb: CRITS, 2001, pp. 126-129. ]

35. Петунин А. А. Оптимизация маршрута инструмента для машин резки листового материала // Компьютерные науки и информационные технологии: Междунар. науч. изд.: матер. 13-й междунар. конф. CSIT"2011 (Гар-миш-Пантеркирхен, Германия, 27 сент. - 2 окт. 2011). Уфа, 2011. Т. 1. С. 179-182. [ A. A. Petunin, "Tool route optimization for structural sheet cutting machines," in Proc. 13th workshop on Computer Sciences and Informational Technologies, (CSIT"2011) Garmish-Panterkirhen, Germany, 2011, (in Russian), Ufa, 2011, vol. 1, pp. 179-182. ]

36. Новожилова М. В. Решение задачи поиска глобального экстремума линейной функции цели на структуре линейных неравенств: препринт. АН УССР, Ин-т проблем машиностр. Харьков, 1988. 48 с. [ M. V. Novozhilova, Solving the problem of global extremum search for linear goal function on the basis of linear inequality structure, (in Russian). Preprint. AS Ukr.SSR. Institute of engineering industry problems. Kharkov, 1988. ]

37. Кацев С. Б. Об одном классе дискретных минимаксных задач // Кибернетика. 1979. № 5. С. 139-141. [ S. B. Katsev, "About one class of discrete minimax problems," (in Russian), Cybernetics, no. 5, pp. 139-141, 1979. ]

38. Липовецкий А. И. К оптимизации свободного размещения прямоугольников // Автоматизация проектирования в машиностроении. 1985. С. 80-87. [ A. I. Lipovetski, "To optimization of rectangular free placement," (in Russian), Automation design in engineering industry, Minsk, pp. 80-87, 1985. ]

39. Аккуратов Г. В., Березнев В. А., Брежнева О. А.

О методе решения уравнения с булевыми переменными // Принятие решений в условиях неопределенности: межвуз. науч. сб. Уфа: УАИ, 1990. С. 145-154. [ G. V. Accuratov, V. A. Bereznev, and O. A. Brezhneva, "About the method of solving equation with Boolean variables," (in Russian), Making decision under uncertainty conditions. Interinstitute scientific collection, Ufa: USATU, pp. 145-154, 1990. ]

40. Mukhacheva E. A., Zalgaller V. A. Linear programming cutting problems // Int. J. of Software Engineering and Knowledge Engineering. 1993. V. 3, No. 4. P. 463-476. [ E. A. Mukhacheva and V. A. Zalgaller, "Linear programming cutting problems," Int. J. of Software Engineering and Knowledge Engineering, vol. 3, no. 4, pp. 463-476, 1993. ]

41. Мухачева А. С., Валеева А. Ф., Картак В. М. Задачи двумерной упаковки в контейнеры: новые подходы к разработке методов локального поиска оптимума. М.: МАИ, 2004. 193 с. [ A. S. Mukhacheva, A. F. Valeeva, and V. M. Kartack, Problems of 2D packings into containers: new approaches to development of local optimum search methods, (in Russian). Moscow: MAI, 2004. ]

42. Мухачева А. С. Технология блочных структур локального поиска оптимума в задачах прямоугольной упаковки // Информационные технологии. Приложение. 2004. № 5. С. 18-31. [ A. S. Mukhacheva, "Technology of block structures for optimumlocal search in rectangular bin-packing problems", (in Russian), in in Appendix to Magazine Information technologies. Appendix, no. 5, pp. 18-31, 2004. ]

43. Кочетов Ю. А. Вероятностные методы локального поиска для задач дискретной оптимизации // Дискретная математика и ее приложения: c6. лекций молодежн. и науч. шк. по дискретной математике и ее приложениям. М.: Изд-во центра прикладных исследований при мех.-матем. ф-те МГУ, 2000. С. 87-117. [ U. A. Kochetov, "Probabilistic methods of local search for discrete optimization problems," (in Russian), in Discrete mathematics and its application. Collection of lectures of student and scientific schools on discrete mathematics and its applications, Moscow: Publishing house of the applied research center of the mech.-maths depart. MSU, 2000, pp. 87-117. ]

44. Норенков И. П. Эвристики и их комбинации в генетических методах дискретной оптимизации. // Информационные технологии. 1999. № 1. С. 2-7. [ I. P. Norenkov, "Heuristics and their combinations in discrete optimization genetic methods," (in Russian), in Appendix to Magazine Information technologies, no. 1, pp. 2-7, 1999. ]

45. Мухачева А. С., Чиглинцев А. В., Смагин М. А., Мухачева Э. А. Задачи двумерной упаковки: развитие генетических алгоритмов на базе смешанных процедур локального поиска оптимального решения // Информационные технологии. Приложение. 2001. № 9. 28 c. [ A. S. Mukhacheva, et al., "2D bin--packing problems: development of genetic algorithms based on compound procedures of local search for optimal solution," (in Russian), in Appendix to Magazine Information technologies, no. 9, 2001. ]

46. Frolovsky V. D., Pushkaryova G. V. Metal cutting motion optimization for NC-programs design, using genetic algorithms. Proc. of the 6th Int. Conf. on Computer Graphics and Artificial Intelligence, Limoges (France), May 14-15, 2003. P. 143-152. [ V. D. Frolovsky and G. V. Pushkaryova, "Metal cutting motion optimization for NC-programs design, using genetic algorithms," Proc. of the 6th Internat. Conf. on Computer Graphics and Artificial Intelligence, Limoges (France), May 14-15, 2003, pp. 143-152. ]

47. Корчевская О. В., Жуков Л. А. Получение нижних границ для задач двух и трехмерной ортогональной упаковки [Электронный ресурс] // Исследовано в России: электронный журнал. 2008. 62. С. 685-694. URL: http:// zhurnal.ape.relarn/articles/2008/062.pdf [ O. V. Korchevskaja, L. A. Zhukov, "Low boundaries procure for 2G and 3D orthogonal bin-packing problems," (in Russian), Electronic magazine "Investigated in Russia", 62, 2008. pp. 685-694, http:// zhurnal.ape.relarn/articles/2008/062.pdf ]

48. Mukhacheva E., ed. Special issue: Decision making under conditions of uncertainty (cutting-packing problems) // The International Scientific Collection. 1997. Ufa, Russia. [ E. Mukhacheva, ed. Special issue: Decision making under conditions of uncertainty (cutting-packing problems). The International Scientific Collection, Ufa, Russia, 1997. ]

49. Sergeyeva O., Scheithauer G., Terno J. The value correction method for packing of irregular shapes // Decision making under conditions of uncertainty (cutting-packing problems): The Int. Sci. Collection. Ufa, 1997. P. 261-270. [ O. Sergeyeva, G. Scheithauer, and J. Terno, "The value correction method for packing of irregular shapes," Decision making under conditions of uncertainty (cutting--packing problems). The International Scientific Collection, Ufa, 1997, pp. 261-270. ]

50. Belov G., Kartak V., Rohling H., Scheithauer G. One-dimensional relaxations and LP bounds for orthogonal packing. ITOR, 2009. V. 16. P. 745-766. [ G. Belov, et al., "One-dimensional relaxations and LP bounds for orthogonal packing," ITOR, vol. 16, pp. 745-766, 2009. ]

51. Фроловский В. Д. Параметрическое моделирование и идентификация трехмерных объектов со сложной структурой // Информационные системы и технологии: матер. Междунар. науч.-техн. конф.. Новосибирск: НГТУ, 2003. Т. 1. С. 153-155. [ V. D. Frolovski, "Parametric simulation and identification of 3D objects with complicated structure," (in Russian), in Proc. Int. Sci.-Tech. Conference "Informational Systems and Tecnnologies", Novosibirsk, NGTU, 2003, vol. 1, pp. 153-155. ]

52. Колоколов А. А., Нагорная З. Е., Архимен-ко М. Ю., Иванова С. Д. Проектирование меховых изделий с использованием математического моделирования // Динамика систем, механизмов и машин: матер. IV Междунар. науч.-техн. конф., посвящ. 60-летию ОмГТУ. Кн. 1. Омск: ОмГТУ, 2002. С. 297-299. [ A. A. Kolokolov, et al., "Fur goods design using mathematical modeling, Dynamics of systems, mechanisms and machines," (in Russian), in Proc. 4 Int. Sci.-Tech. Conference to the 60 anniversary of OmGTU, vol.1, Omsk, 2002, pp. 297-299. ]

53. Панюкова Т. А. Оптимальные Эйлеровы покрытия с упорядоченным охватыванием для плоских графов // Дискретный анализ и исследование операций. Март-апрель, 2011. Т. 18, № 2. С. 64-74. [ T. A. Panukova, "Optimal Euler coverings with ordered union for flat graphs," (in Russian), in Discrete analysis and operational research, MarchApril, vol. 18, no. 2, pp. 64-74, 2011. ]

54. Новиков И. С. Автоматическое размещение разногабаритных электронных элементов посредством генетического поиска с миграцией // Проектирование и технология электронных средств. 2007. № 1. C. 33-38. [ I. S. Novikova, "Automatical allocation of electronic elements of different sizes by genetic search with migration," (in Russian), in Design and technology of electronic facility, no. 1, pp. 33-38, 2007. ]

55. Мухачева Э. А., Валеев Р. С. Локальный поиск размещения товарных позиций на базе анализа их номенклатурной принадлежности // Информационные технологии. 2010. № 6. С. 18-23. [ E. A. Mukhacheva and R. S. Valeev, "Local search of Commodity allocation based on their product range," (in Russian), in Informational Technologies, no. 6, pp. 18-23, 2010. ]

56. Мухачева Э. А., Бухарбаева Л. Я., Филиппов Д. В., Карипов У. А. Оптимизационные проблемы транспортной логистики: оперативное размещение контейнеров при транспортировке грузов // Информационные технологии. 2008. № 7. С. 17-22. [ E. A. Mukhacheva, et al., "Optimization problems of transportation logistics; containers operational allocation while cargo conveying," (in Russian), Information Technologies, no. 7, pp. 17-23, 2008. ]

57. Телицкий С. В., Филиппова А. С. Комплексный подход к решению задачи покрытия области заготовками неопределенных размеров // Научно-технические ведомости СПбГПУ. Информатика. Телекоммуникации. Управле-

ние. 2 (145) / 2012, СПб., 2012. С. 61-67. [ S. V. Telitskiy and A. S. Filippova, "Complex approach to solving the problem of area covering with items of non-defined sizes," (in Russian), in Nauchno-tehnicheskye Vedomosty SPbGPU, Informatics. Telecommunication. Management, 2(145)/2012, StPsb, pp. 61-67, 2012. ]

58. Васильева Л. И. Алгоритмы упаковки N-мерных гофров на базе методов линейного программирования: дис. ... канд. техн. наук / УГАТУ, 2000. [ L. I. Vasilyeva, "Packing algorithms od N-dimensionv corrugations based on linear programming methods," (in Russian): Dissertation for scientific degree of a Cand. of Tech. Sci, UGATU, 2000. ].

59. Картак В. М. Модели и методы оптимизации упаковки n-мерных параллелепипедов: дис. ... канд. физ.-мат. наук / УГАТУ, 1999. [ V. M. Kartak, "Models and methods of optimization of n-dimensional parallelepiped packing," (in Russian): Dissertation for scientific degree of a Cand. of phisics-maths Sci, UGATU, 1999. ]

ВАЛИАХМЕТОВА Юлия Ильясовна, доц. каф. математики. Дипл. инж. (УГАТУ, 2004). Канд. техн. наук по мат. моде-лир., числ. методам и комплексам программ (УГАТУ, 2008). Иссл. в обл. оптимизац. задач раскроя-упаковки. ФИЛИППОВА Анна Сергеевна, проф. каф. прикладной информатики. Дипл. инж. (УГАТУ, 1996). Д-р техн. наук мат. моделир., числ. методам и комплексам программ (СГАУ, 2007). Иссл. в обл. комбинаторных алгоритмов.

Title: Theory of optimum resource utilization by L. V. Kanto-rovich in cutting-packing problems: overview and history of development of solving methods Authors: Yu. I. Valiakhmetova, A. S. Filippova. Affiliation:

1 Bashkir State Agrarian University (BSAU), Russia.

2 Bashkir State Pedagogical University of M. Akmulla(BSPU), Russia.

Email: [email protected], [email protected]. Language: Russian.

Source: Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), vol. 18, no. 1 (62), pp. 186-197, 2014. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print). Abstract: The article presents examples of solution techniques for cutting-packing problems, which are still relevant to this day taking into account their diversity and many-sided applicability. The scientific papers by L. V. Kantorovich are considered to be fundamental for the development of these procedures. The article gives an overview of procedures for solving cutting-packing problems that have been developed by Soviet and Russian scientists in the last 80 years, including various scientific schools of the USSR and Russia. Summary of solving procedures and the history of their development are also described. Key words: cutting, optimum use of resources, optimization, exact methods, heuristic methods.

VALIAKHMETOVA, Yuliya Ilyasovna, Associate Prof., Dept. of Mathematics, Dipl. Engineer-programmer (UGATU, 2004). Cand. of Tech. Sci. (UGATU, 2008). FILIPPOVA, Anna Sergeevna, Prof., Dept. of Applied Informatics. Dipl. Systems Engineer (UGATU, 1996). Cand. of Tech. Sci. (Ufa State Univ., 1999)., Dr. of Tech. Sci. (Samara State Aerospace Univ., 2007).

«за вклад в теорию оптимального распределения ресурсов»

Русский экономист Леонид Витальевич Канторович родился в 1912 г. в Санкт-Петербурге, Россия. Русская революция началась, когда ему было пять лет, во время гражданской войны его семья бежала на год в Белоруссию. В 1922 г. умер его отец, Виталий Канторович, оставив сына на воспитание матери, урожденной Паулины Сакс.

К. проявлял интерес к естественным наукам задолго до того, как он в 1926 г. в возрасте четырнадцати лет поступил в Ленинградский университет. Здесь он изучает не только естественные дисциплины, но и политэкономию, современную историю, математику. Его склонность к математике становится определяющей в работе по теории рядов, которую он представил на первом Всесоюзном математическом конгрессе в 1930 г. Закончив в том же году учебу, он остается в Ленинградском университете на преподавательской работе и продолжает свои исследования на кафедре математики. К 1934 г. он становится профессором, а годом позже, когда была восстановлена система академических степеней, получает докторскую степень.

В 30-е гг., в период интенсивного экономического и индустриального развития Советского Союза, К. был в авангарде математических исследований и стремился применить свои теоретические, разработки в практике растущей советской экономики. Такая возможность представилась в 1938 г., когда он был назначен консультантом в лабораторию фанерной фабрики. Перед ним была поставлена задача разработать такой метод распределения ресурсов, который мог бы максимизировать производительность оборудования, и К., сформулировав проблему с помощью математических терминов, произвел максимизацию линейной функции, подверженной большому количеству ограничителей. Не имея чистого экономического образования, он тем не менее знал, что максимизация при многочисленных ограничениях – это одна из основных экономических проблем и что метод, облегчающий планирование на фанерных фабриках, может быть использован во многих других производствах, будь то определение оптимального использования посевных площадей или наиболее эффективное распределение потоков транспорта.

Метод К., разработанный для решения проблем, связанных с производством фанеры, и известный сегодня как метод линейного программирования, нашел широкое экономическое применение во всем мире. В работе «Математические методы организации и планирования производства», опубликованной в 1939 г., К. показал, что все экономические проблемы распределения могут рассматриваться как проблемы максимизации при многочисленных ограничителях, следовательно, могут быть решены с помощью линейного программирования.

В случае с производством фанеры он представил переменную, подлежащую максимизации, в виде суммы стоимостей продукции, выпускаемой всеми машинами. Ограничители были представлены уравнениями, которые устанавливали соотношение между количеством каждого из расходуемых факторов производства (например, древесины, электроэнергии, рабочего времени) и количеством продукции, выпускаемой каждой из машин, где величина любой из затрат не должна превышать имеющуюся в распоряжении сумму.

Затем К. ввел новые переменные (разрешающие мультипликаторы) как коэффициенты к каждому из факторов производства в ограничительных уравнениях и показал, что значения как переменной затрачиваемых факторов, так и переменной выпускаемой продукции могут быть легко определены, если известны значения мультипликаторов. Затем он представил экономическую интерпретацию этих мультипликаторов, показав, что они, в сущности, представляют собой предельные стоимости (или «скрытые цены») ограничивающих факторов; следовательно, они аналогичны повышенной цене каждого из факторов производства в режиме полностью конкурентного рынка.

И хотя с тех пор разрабатывались более совершенные компьютерные методики для определения значений мультипликаторов (К. использовал метод последовательного приближения), его первоначальное понимание экономического и математического смысла мультипликаторов заложило основу для всех последующих работ в этой области в Советском Союзе. Впоследствии сходная методология была независимо разработана на Западе Тьяллингом Ч. Купмансом и другими экономистами.

Даже в тяжелые годы второй мировой войны, когда К. занимал должность профессора в Военно-морской инженерной академии в блокадном Ленинграде, он сумел создать значительное исследование «О перемещении масс» (1942). В этой работе он использовал линейное программирование для планирования оптимального размещения потребительских и производственных факторов.

Продолжая работать в Ленинградском университете, К. одновременно возглавил отдел приближенных методов в Институте математики АН СССР в Ленинграде. В последующие несколько лет он способствовал развитию новых математических методов планирования для советской экономики. В 1951 г. он (совместно с математиком, специалистом в области геометрии В.А. Залгаллером) опубликовал книгу, описывающую их работу по использованию линейного программирования для повышения эффективности транспортного строительства в Ленинграде. Через восемь лет он опубликовал самую, видимо, известную свою работу «Экономический расчет наилучшего использования ресурсов». В ней он сделал далеко идущие выводы по идеальной организации социалистической экономики для достижения высокой эффективности в использовании ресурсов. В особенности он рекомендовал шире использовать скрытые цены при распределении ресурсов по Союзу и даже применять процентную ставку для выражения скрытой цены времени при планировании капиталовложений.

Хотя некоторые советские ученые с опаской относились к этим новым методам планирования, постепенно методы К. были приняты советской экономикой. В 1949 г. он был удостоен Сталинской премии за работу в области математики, в 1958 г. избран членом-корреспондентом Академии наук СССР. Шестью годами позже он стал академиком. В 1960 г., переехав в Новосибирск, где был расположен самый передовой в СССР компьютерный центр, он стал руководителем отдела экономико-математических методов в Сибирском отделении АН СССР. Вместе со своими коллегами, экономистами-математиками В.В. Новожиловым и В.С. Немчиновым, К. стал лауреатом Ленинской премии в 1965 г., а в 1967 г. был награжден орденом Ленина. В 1971 г. он становится руководителем лаборатории в Институте управления народным хозяйством в Москве.

Премия памяти Нобеля 1975 г. по экономике была присуждена совместно К. и Тьяллингу Ч. Купмансу «за вклад в теорию оптимального распределения ресурсов». В своей речи на церемонии презентации представитель Шведской королевской академии наук Рагнар Бентцель отмечал очевидность того, о чем свидетельствовали работы двух лауреатов, – «основные экономические проблемы могут изучаться в чисто научном плане, независимо от политической организации общества, в котором они исследуются». Работы Купманса и К. по линейному программированию тесно соприкасались, а американский ученый подготовил в 1939 г. первую публикацию книги советского ученого на английском языке. В своей Нобелевской лекции «Математика в экономике: достижения, трудности, перспективы» К. говорил о «проблемах и опыте плановой экономики, особенно советской экономики».

В следующем году К. стал директором Института системных исследований АН СССР. Проводя собственные исследования, он в то же время поддерживал и обучил целое поколение советских экономистов.

В 1938 г. К. женился на Наталье Ильиной, враче по профессии. Их дети – сын и дочь – стали экономистами. К. скончался 7 апреля 1986 г. в возрасте 74 лет.

Кроме Нобелевской премии и наград, полученных в СССР, К. были присуждены почетные степени университетами Глазго, Гренобля, Ниццы, Хельсинки и Парижа; он был членом Американской академии наук и искусств.

 


Читайте:



Льготы по налогу на имущество организаций

Льготы по налогу на имущество организаций

Чиновники утвердили новый порядок применения кода налоговой льготы 2010257 по налогу на имущество в 2018 году. Проверьте, кто имеет право на эту...

Торговая стратегия ADX и RSI

Торговая стратегия ADX и RSI

DMI - Directional Movement Indicator (Индикатор направленного движения)Направленное движение - это концепция, которую Дж. Уэллс Уайлдер младший...

Дарение квартир нерезидентом резиденту в россии Дарение квартиры между близкими родственниками нерезиденту

Дарение квартир нерезидентом резиденту в россии Дарение квартиры между близкими родственниками нерезиденту

В частности, это относится к: двоюродные сестры или братья; сестры или братья супруги; племянники; двоюродные дедушки и бабушки; теща и тесть;...

Как забрать вклад из банка в случае отзыва у него лицензии или банкротства - рекомендации для вкладчиков Порядок выплаты по вкладам при ликвидации банка

Как забрать вклад из банка в случае отзыва у него лицензии или банкротства - рекомендации для вкладчиков Порядок выплаты по вкладам при ликвидации банка

Тень мирового финансового кризиса продолжает шагать по стране, оставляя позади себя закрывающиеся организации и неразбериху. Первыми принимают удар...

feed-image RSS